TEMA 10 Estimación por intervalos

TEMA 10 EJEMPLOS. ESTIMACIÓN POR INTERVALOS

Resumen Tema 9 ESTIMADORES PUNTUALES

Resument tema y Estimate on tonionales					
Parámetro poblacional a estimar $ heta$	Estimador $\widehat{ heta}$	valor $esperado\ E(\widehat{ heta})$	$Sesgo$ $b(\hat{\theta}) = E(\hat{\theta}) - \theta$	Varianza $Var(\widehat{ heta})$	$Var(\hat{\theta}) + b^2(\hat{\theta})$
μ Normal	$\hat{\mu} = \bar{X}_n = \frac{\sum_{i=1}^n X_i}{n}$	$E(\bar{X}_n) = \mu$	insesgado 0	$\frac{\sigma^2}{n}$	EMV
p Bernoulli	$\hat{p} = \frac{\sum_{i=1}^{n} X_i}{n}$	$E(\hat{p}) = p$	insesgado 0	$\frac{p(1-p)}{n}$	EMV
σ ² Normal μ desconocida	$\hat{\sigma}^2 = S_n^2 = \frac{\sum_{i=1}^n (X_i - \bar{x}_n)^2}{n}$	$E(S_n^2) = \frac{n-1}{n}\sigma^2$	sesgado $b(S_n^2) = -\frac{\sigma^2}{n}$ Asintóticamente insesgado	$Var(S_n^2)$	EMV
σ ² Normal μ conocida	$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (X_i - \mu)^2}{n}$	$E(\hat{\sigma}^2) = \sigma^2$	Insesgado 0	$Var(\hat{\sigma}^2)$	EMV
λ Poisson	$\hat{\lambda} = \bar{X}_n = \frac{\sum_{i=1}^n X_i}{n}$	$E(\overline{X}_n) = \lambda$	insesgado 0	$\frac{\lambda}{n}$	EMV

10. Estimación por intervalos.

La estimación puntual de un parámetro poblacional no coincidirá con el verdadero valor del parámetro pero se espera que esté próximo a él.

La estimación por intervalos construye intervalos, alrededor del estimador puntual, en los que será altamente probable que se encuentre el valor del parámetro poblacional.

A un intervalo de este tipo se le llamará: <u>intervalo aleatorio</u> o estimador por intervalo.

Nivel de confianza $1 - \alpha$: probabilidad de que el intervalo aleatorio contenga al parámetro. Es decir, si tomamos muestras de tamaño "n", el nivel de confianza indicará que el $(1 - \alpha) \cdot 100$ de las muestras de ese tamaño proporcionará un intervalo que contendrá al parámetro.

Niveles de confianza más habituales: 0,99; 0,95; 0,955 y 0,90.

10.1. Intervalos de confianza para la MEDIA POBLACIONAL μ

10. 1.1. En una población NORMAL con varianza σ^2 conocida.

PARA n cualquier tamaño

Nivel de confianza $1 - \alpha \Longrightarrow$ Intervalo aleatorio: $\overline{X}_n \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ (Reproductividad de la Normal)

Ejemplo 10.1 Una empresa automovilística quiere estimar la media de las emisiones de CO_2 del último modelo de coche que quiere sacar al mercado. De una muestra aleatoria de n = 9 coches ha resultado una media de emisiones de 170 gr de CO_2 por Km recorrido. Se supondrá que la variable X, que mide las emisiones de CO_2 de esos coches, tiene una distribución Normal de varianza $\sigma^2 = 48^2$. Nivel de confianza $1 - \alpha = 0.95$.

<u>Solución</u>: para una m.a.s. de n=9 coches $\bar{x}_n=170$ gr por Km (<u>estimación puntual</u>). La v.a. X: emisiones de CO_2 del coche (en gr por Km) tienen una distribución Normal con varianza conocida: $X \sim Normal(\mu; \sigma^2 = 48^2)$. Por tanto, aplicando el resultado anterior y teniendo en cuenta que para un nivel de confianza de $1-\alpha=0.95 \rightarrow \frac{\alpha}{2}=0.025 \rightarrow P(Z < z_{\alpha/2})=0.9750 \leftrightarrow z_{\alpha/2}=1.96$, queda:

 $\overline{X}_n \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \rightarrow 170 \pm 1,96 \frac{48}{\sqrt{9}} \rightarrow 170 \pm 31,36$. Por tanto $IC(\mu) = [138,64; 201,36]$ (estimación por intervalo). La media de las emisiones de CO_2 de este modelo de coche está entre 138,64 y 201,36 gr por Km con una confianza del 95%

Solución desarrollada:

Sea la v.a. X: emisiones de CO_2 del coche (en gr por Km). $X \sim Normal(\mu; \sigma^2 = 48^2)$ (población normal) Se toman m.a.s. de n = 9 coches: el vector aleatorio (X_1, X_2, \cdots, X_9) representa todas las muestras de 9 coches que se pueden tomar.

Las v.a. X_i : emisiones del i — ésimo coche ; $X_i \sim Normal(\mu; \sigma^2 = 48^2)$ con $i = 1, 2, \cdots, 9$, es decir, iid. Sabemos que, en una población normal con varianza conocida, por la propiedad de reproductividad del modelo normal, la media muestral tiene una distribución Normal de media μ y desviació típica $\frac{\sigma}{\sqrt{n}}$ es de-

cir:
$$\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n} \sim Normal\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

En nuestro caso
$$\bar{X}_n = \frac{\sum_{i=1}^9 X_i}{9} \sim Normal\left(\mu, \frac{\sigma}{\sqrt{n}} = \frac{48}{\sqrt{9}} = 16\right)$$

Por tanto la v.a. $Z = \frac{\bar{X}_n - \mu}{\frac{48}{\sqrt{9}}} \sim N(0; 1)$, es decir, Z se distribuye como una Normal tipificada.

Utilizaremos esta expresión para obtener una estimación por intervalo de la media poblacional μ al 95% de confianza.

Para un nivel de confianza $1-\alpha=0.95$ buscamos en la normal tipificada el intervalo $\left[-z_{\alpha/2};\ z_{\alpha/2}\right]$ tal que $P\left(-z_{\alpha/2} < Z < z_{\alpha/2}\right) = 0.95 \leftrightarrow 2F\left(z_{\alpha/2}\right) - 1 = 0.95 \leftrightarrow F\left(z_{\alpha/2}\right) = 0.9750 \leftrightarrow z_{\alpha/2} = 1.96$

Así queda:
$$0.95 = P(-1.96 < Z < 1.96) = P\left(-1.96 < \frac{\bar{X}_n - \mu}{\frac{48}{\sqrt{9}}} < 1.96\right) = P\left(-1.96 < \frac{\bar{X}_n - \mu}{\sqrt{9}} < 1.96\right)$$

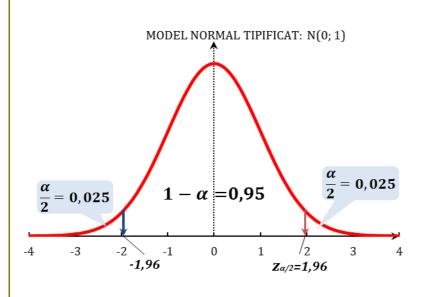
$$= P\left(-\bar{X}_n - 1,96\frac{^{48}}{\sqrt{9}} < -\mu < -\bar{X}_n + 1,96\frac{^{48}}{\sqrt{9}}\right) = P\left(\bar{X}_n - 1,96\frac{^{48}}{\sqrt{9}} < \mu < \bar{X}_n + 1,96\frac{^{48}}{\sqrt{9}}\right)$$

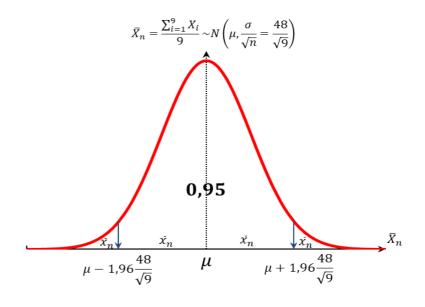
TEMA 10 EJEMPLOS. ESTIMACIÓN POR INTERVALOS

Para la muestra concreta de n=9 coches se ha obtenido una media de $\bar{x}_n=170$ y el intervalo de confianza para la media poblacional μ es: $IC(\mu)=\left[170-1,96\frac{48}{\sqrt{9}};\ 170+1,96\frac{48}{\sqrt{9}}\right]=\left[138,64;\ 201,36\right]$ Por tanto, la media de las emisiones de CO_2 de este modelo de coche está entre 138,64 y 201,36 gr por Km con una confianza del 95%.

GRÁFICAMENTE

Nótese que: $0.95 = P\left(\bar{X}_n - 1.96 \frac{48}{\sqrt{9}} < \mu < \bar{X}_n + 1.96 \frac{48}{\sqrt{9}}\right) = P\left(\mu - 1.96 \frac{48}{\sqrt{9}} < \bar{X}_n < \mu + 1.96 \frac{48}{\sqrt{9}}\right)$ para todas las muestras de tamaño $n = 9(X_1, X_2, \cdots, X_9)$.





10.1.2. En una población NORMAL con varianza σ^2 desconocida.

PARA n cualquier tamaño (muestra pequeña $n \le 30$)

Variable aleatoria
$$\Rightarrow T = \frac{\bar{X}_n - \mu}{S_n / \sqrt{n-1}} = \frac{\bar{X}_n - \mu}{S_n} \cdot \sqrt{n-1} \sim t_{n-1}$$
 t de Student con (n-1) grados de libertad.

Nivel de confianza $1 - \alpha \Rightarrow$ Intervalo aleatorio: $\overline{X}_n \pm t_{\alpha/2} \frac{S_n}{\sqrt{n-1}}$

• Si la población es NORMAL y la varianza σ^2 desconocida y la MUESTRA es suficientemente GRANDE se puede aplicar el mismo intervalo aleatorio que el caso 2.1.1 pero sustituyendo la varianza poblacional por la muestral (la t – Student converge a la Normal):

Población NORMAL, varianza σ^2 desconocida y PARA n *GRANDE* n>30

Nivel de confianza $1 - \alpha \Longrightarrow$ Intervalo aleatorio: $\overline{X}_n \pm z_{\alpha/2} \frac{S_n}{\sqrt{n}}$

Ejemplo 10.2 Una empresa automovilística quiere estimar la media de las emisiones de CO_2 del último modelo de coche que quiere sacar al mercado. De una muestra aleatoria de n = 9 coches ha resultado una media de emisiones de 170 gr de CO_2 por Km recorrido con una desviación típica de 45 gr por Km. Se supondrá que la variable X, que mide las emisiones de CO_2 de esos coches, tiene una distribución Normal de varianza poblacional σ^2 desconocida. Nivel de confianza $1 - \alpha = 0.95$.

Solución:
$$IC(\mu) = [135,41; 204,59]$$

<u>Solución</u>: para una m.a.s. de n = 9 coches $\bar{x}_n = 170$ y $s_n = 45$ gr por Km (<u>estimación puntual</u>)

La v.a. X: emisiones de CO_2 del coche (en gr por Km) tienen una distribución Normal con varianza desconocida: $X \sim Normal(\mu; \sigma^2)$.

Por tanto, aplicando el resultado anterior en 2.1.2, la v.a. $T=\frac{\bar{X}_n-\mu}{S_n/\sqrt{n-1}}=\sim t_{n-1}\to T=\frac{\bar{X}_n-\mu}{45/\sqrt{8}}=\sim t_8$, es decir, T se distribuye como una t de Student con 8 grados de libertad.

El intervalo es $\overline{X}_n \pm t_{\frac{\alpha}{2}} \frac{S_n}{\sqrt{n-1}}$. Para un nivel de confianza de $1 - \alpha = 0.95 \rightarrow \frac{\alpha}{2} = 0.025$ y $t_{\alpha/2}$ es un valor de la t_8 tal que $P(t_8 > t_{\alpha/2}) = 0.025 \rightarrow P(t_8 < t_{\alpha/2}) = 0.9750 \leftrightarrow t_{\alpha/2} = 2.306$,

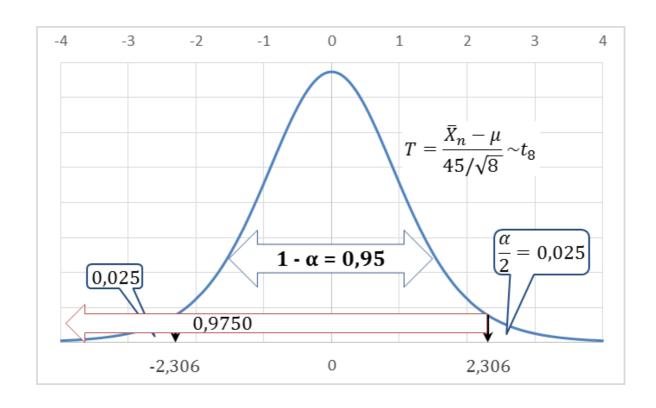
Así, el intervalo de confianza queda:

$$\overline{X}_n \pm t_{\frac{\alpha}{2}} \frac{S_n}{\sqrt{n-1}} \to 170 \pm 2,306 \frac{45}{\sqrt{8}} \to 170 \pm 36,69$$
. Por tanto $IC(\mu) = [135,41; 204,59]$ (estimación por

<u>intervalo</u>). La media de las emisiones de CO₂ de este modelo de coche estaría entre 135,41 y 204,59 gr por Km con una confianza del 95%.

GRÁFICAMENTE:

$$0.95 = P\left(-2.306 < \frac{\bar{X}_n - \mu}{45/\sqrt{8}} < 2.306\right) = P\left(\bar{X}_n - 2.306 + \frac{45}{\sqrt{8}} < \mu < \bar{X}_n + 2.306 + \frac{45}{\sqrt{8}}\right)$$



10.1.3. En una población no normal con varianza σ^2 conocida.

PARA *n GRANDE*

Variable aleatoria
$$\Rightarrow Z = \frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} = \frac{\bar{X}_n - \mu}{\sigma} \cdot \sqrt{n} \sim Normal(0, 1)$$
 (TCL)

Nivel de confianza $1-\alpha \Longrightarrow$ Intervalo aleatorio: $\overline{X}_n \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

• Si la distribución poblacional es desconocida o es un modelo conocido distinto del normal, la varianza σ^2 es desconocida y la MUESTRA es suficientemente GRANDE, por el TCL, se puede aplicar también el mismo criterio, sustituyendo la varianza poblacional por una estimación adecuada.

$$\overline{X}_{n} \pm z_{\alpha/2} \frac{\widehat{\sigma}}{\sqrt{n}}$$

$$Desconocida(\mu, \sigma) \rightarrow \widehat{\sigma} = s_{n}$$

$$Bernoulli(p) \rightarrow \widehat{\sigma} = \sqrt{\widehat{p}(1 - \widehat{p})}$$

$$Poisson(\lambda) \rightarrow \widehat{\sigma} = \sqrt{\widehat{\lambda}} = \sqrt{\overline{x}}$$

Ejemplo 10.3 Una empresa automovilística quiere estimar la media de las emisiones de CO_2 del último modelo de coche que quiere sacar al mercado. De una muestra aleatoria de n = 100 coches ha resultado una media de emisiones de 170 gr de CO_2 por Km recorrido con una desviación típica de 45 gr por Km. $X \sim \mathcal{D}(\mu; \sigma)$ Nivel de confianza $1 - \alpha = 0.95$.

Solución: $IC(\mu) = [161, 18; 178, 82]$

<u>Solución</u>: para una m.a.s. de n = 100 coches $\bar{x}_n = 170$ y $s_n = 45$ gr por Km (<u>estimación puntual</u>)

La v.a. X: emisiones de CO_2 del coche (en gr por Km) tienen una distribución desconocida de parámetros desconocidos: $X \sim \mathcal{D}(\mu; \sigma^2)$.

Las v.a. X_i : emisiones del i – ésimo coche ; $X_i \sim \mathcal{D}(\mu; \sigma^2)$ con $i = 1, 2, \dots, 100$, es decir, iid.

Por el TCL, la media muestral tiene una distribución aproximadamente Normal de media μ y desviació típica $\frac{\sigma}{\sqrt{n}}$ es decir: $\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n} \sim Normal\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$. Como σ es desconocida sustituimos su valor su estimador puntual: $\hat{\sigma} = s_n = 45$.

Por tanto, aplicando el resultado anterior en 2.1.3 y teniendo en cuenta que para un nivel de confianza de $1-\alpha=0.95 \to \frac{\alpha}{2}=0.025 \to P(Z< z_{\alpha/2})=0.9750 \leftrightarrow z_{\alpha/2}=1.96$, queda:

 $\overline{X}_n \pm z_{\alpha/2} \frac{\widehat{\sigma}}{\sqrt{n}} \to \overline{X}_n \pm z_{\alpha/2} \frac{s_n}{\sqrt{n}} \to 170 \pm 1.96 \frac{45}{\sqrt{100}} \to 170 \pm 8.82.$ Por tanto $IC(\mu) = [161, 18; 178, 82].$

La media de las emisiones de CO_2 de este modelo de coche está entre 161,18 y 178,82 gr por Km con una confianza del 95%

10.1.4. Estimación por intervalo de una PROPORCIÓN POBLACIONAL p.

PARA n muy GRANDE $n \ge 100$

Por el TCL, la v.a. $\hat{p} \sim Normal(p; \sqrt{\frac{p(1-p)}{n}})$

Por tanto, la variable aleatoria
$$\Rightarrow Z = \frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} \sim Normal(0,1)$$

Nivel de confianza $1-\alpha \Longrightarrow$ Intervalo aleatorio: $\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

Siendo $\hat{p} = \frac{X}{n} = \frac{\sum_{i=1}^{n} X_i}{n}$ proporción con que se observa el fenómeno en la muestra.

Ejemplo 10.4 Supongamos que se pretende estimar el porcentaje de coches híbridos o eléctricos que hay en la Comunitat Valenciana (CV). Si de una muestra aleatoria simple de 500 propietarios de automóviles, 50 son eléctricos o híbridos, obtener un intervalo de confianza para dicho porcentaje al 90%.

Solución: IC(p) = [7,37%; 12,63%]

<u>Solución</u>:

El modelo de probabilidad poblacional es una Bernoulli.

La variable aleatoria $X = \begin{cases} 0 \text{ No híbrido o eléctrico} \\ 1 \text{ Sí híbrido o eléctrico} \end{cases}$ tiene una distribución Bernoulli de parámetro \boldsymbol{p}

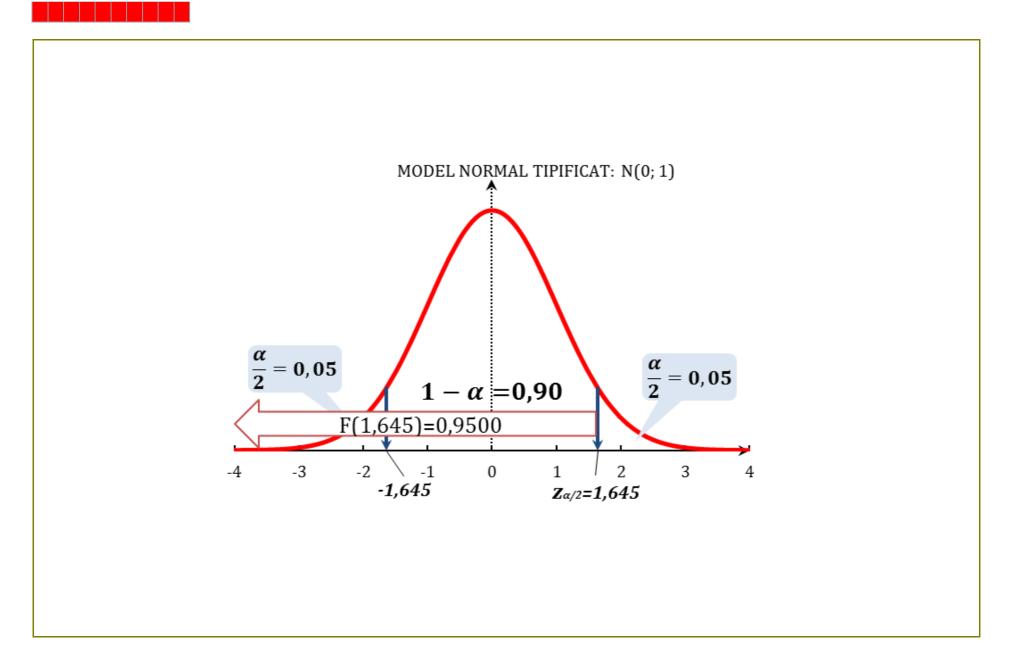
desconocido. Si tenemos en cuenta los 500 $\left(x_i = \begin{cases} 0 & no \\ 1 & si \end{cases}\right)$, la proporción muestral de propietarios de híbri-

dos o eléctricos es. $\hat{p} = \frac{\sum_{i=1}^{500} x_i}{n} = \frac{50}{500} = 0,10.$

Por tanto, aplicando el resultado anterior en 2.1.4 y teniendo en cuenta que para un nivel de confianza de $1-\alpha=0.90 \to \frac{\alpha}{2}=0.05 \to P(Z>z_{\alpha/2})=0.05 \to P(Z\leq z_{\alpha/2})=F(z_{\alpha/2})=0.95 \leftrightarrow z_{\alpha/2}=1.645$, el intervalo queda:

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \equiv 0.10 \pm 1.645 \sqrt{\frac{0.1 \cdot 0.9}{500}} \equiv 0.10 \pm 0.0263 \rightarrow IC(p) = [0.0737; 0.1263].$$

En conclusión, el porcentaje de propietarios de coches híbridos o eléctricos en la CV está entre el 7,37 y el 12,63% con una confianza del 90%.



10.2. Intervalo de confianza para la VARIANZA POBLACIONAL σ^2

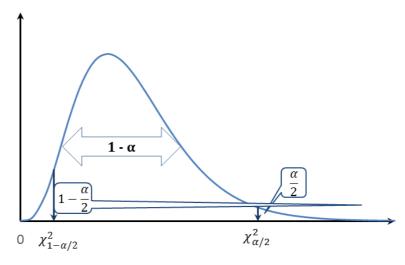
Población NORMAL con media u desconocida.

PARA n cualquier tamaño

Variable aleatoria
$$Y = \frac{nS_n^2}{\sigma^2} \sim \chi_{n-1}^2$$
 n-1 grados de libertad

Nivel de confianza $1 - \alpha \Rightarrow$ Intervalo aleatorio: $\frac{nS_n^2}{\chi_{\alpha/2}^2}$; $\frac{nS_n^2}{\chi_{1-\alpha/2}^2}$

Donde
$$P\left(\chi_{n-1}^2 > \chi_{1-\frac{\alpha}{2}}^2\right) = 1 - \frac{\alpha}{2} \ y \ P\left(\chi_{n-1}^2 > \chi_{\frac{\alpha}{2}}^2\right) = \frac{\alpha}{2}$$



Ejemplo 10.5 Una empresa automovilística quiere estimar la varianza de las emisiones de CO_2 del último modelo de coche que quiere sacar al mercado. De una muestra aleatoria de n=9 coches ha resultado una media de emisiones de 170 gr de CO_2 por Km recorrido con una desviación típica de 45 gr por Km. Se supondrá que la variable X, que mide las emisiones de CO_2 de esos coches, tiene una distribución Normal de varianza poblacional σ^2 desconocida. Nivel de confianza $1-\alpha=0.95$.

Solución: para una m.a.s. de n=9 coches $\bar{x}_n=170$ y $s_n=45$ gr por Km Para obtener un intervalo de confianza para la varianza poblacional σ^2 en un contexto de población normal con media μ desconocida, $X\sim Normal(\mu;\sigma^2)$, se ha de utilizar la v.a. $Y=\frac{nS_n^2}{\sigma^2}\sim\chi_{n-1}^2$ que se distribuye como una ji – cuadrado con n-1 grados de libertad. En este caso: $Y=\frac{9S_n^2}{\sigma^2}\sim\chi_8^2$.

El intervalo aleatorio es: $\left[\frac{nS_n^2}{\chi_{\alpha/2}^2}; \frac{nS_n^2}{\chi_{1-\alpha/2}^2}\right]$

Para un nivel de confianza de $1-\alpha=0.95 \rightarrow \frac{\alpha}{2}=0.025$. Por tanto, los valores del denominador para

una
$$\chi_8^2$$
 son: $P\left(\chi_8^2 > \chi_{1-\frac{\alpha}{2}}^2\right) = 1 - \frac{\alpha}{2} = 0.9750 \leftrightarrow F\left(\chi_{1-\frac{\alpha}{2}}^2\right) = 0.025 \rightarrow \chi_{1-\frac{\alpha}{2}}^2 = 2.18 \text{ y}$

$$P\left(\chi_8^2 > \chi_{\frac{\alpha}{2}}^2\right) = \frac{\alpha}{2} = 0.025 \leftrightarrow F\left(\chi_{\frac{\alpha}{2}}^2\right) = 0.9750 \to \chi_{\frac{\alpha}{2}}^2 = 17.53.$$

El intervalo queda:
$$IC(\sigma^2) = \left[\frac{9.45^2}{17.53}; \frac{9.45^2}{2.18}\right] = [1039,646;8360,09] \rightarrow IC(\sigma) = [32,24; 91,43].$$

La variabilidad en las emisiones de CO2 está entre 32,24 y 91,43 gramos por Km recorrido.

