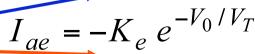
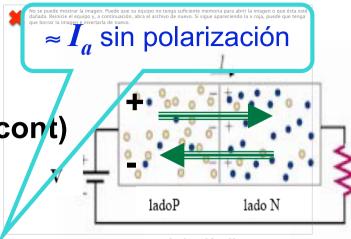

7.3 El diodo de unión: el dispositivo

<u>Dispositivo</u>: unión P-N con contactos


polarización directa

- Característica I(V): curva corriente-ddp aplicada
- Corriente positiva: interiormente de P hacia N


A. Hernández Ramón, S. Heredia Avalos UNIVERSIDAD DE MURCIA SÓLIDOS. SEMICONDUCTORES

- V = 0
 - □ Corriente de huecos: $I_p = I_{dh} + I_{ah} = K_h e^{-V_0/V_T} + I_{ah}$
 - La corriente de difusión depende de los portadores minoritarios que saltan la barrera
 - \Box Corriente de electrones: $I_n = I_{de} + I_{ae} = K_e e^{-V_0/V_T} + I_{ae}$
 - Como en equilibrio dinámico la corriente total = 0
 - \blacksquare ... entonces, corriente de arrastre $I_{ah} = -K_h e^{-}$

signo -: sentido interno de N hacia P

7.3 El diodo de unión: el dispositivo (cont)

- V ≠ 0:
 - Huecos:

$$I_{p} = I_{dh} + I_{ah} = K_{h} e^{-V'/V_{T}} + I_{ah}$$

$$I_{p} = K_{h} e^{-(V_{0}-V)/V_{T}} - K_{h} e^{-V_{0}/V_{T}} = K_{h} e^{-V_{0}/V_{T}} \left(e^{V/V_{T}} - 1\right)$$

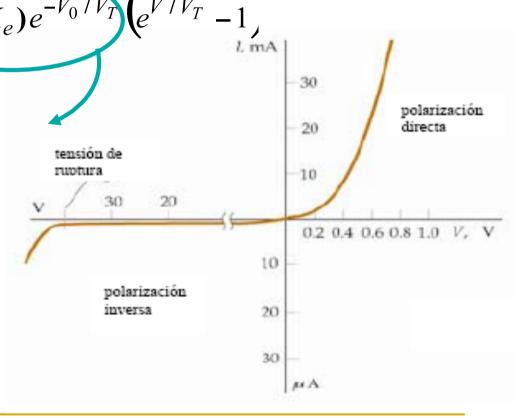
Electrones:
$$I_n = I_{de} + I_{ae} = K_e e^{-V'/V_T} + I_{ae}$$

$$I_a \propto -e^{-V_0/V_T} \qquad I_n = K_e e^{-(V_0 - V)/V_T} - K_e e^{-V_0/V_T} = K_e e^{-V_0/V_T} \left(e^{V/V_T} - 1\right)$$

corriente total (electrones y huecos):

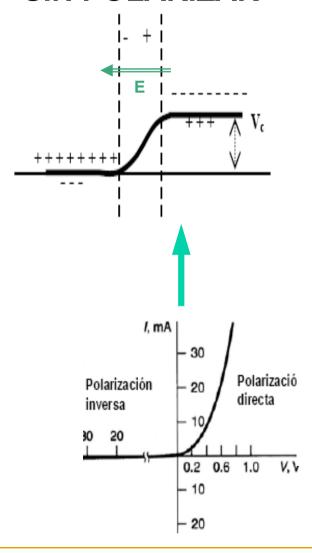
$$I = I_p + I_n = (K_h + K_e)e^{-V_0/V_T} (e^{V/V_T} - 1)$$

7.3 El diodo de unión: el dispositivo (cont)

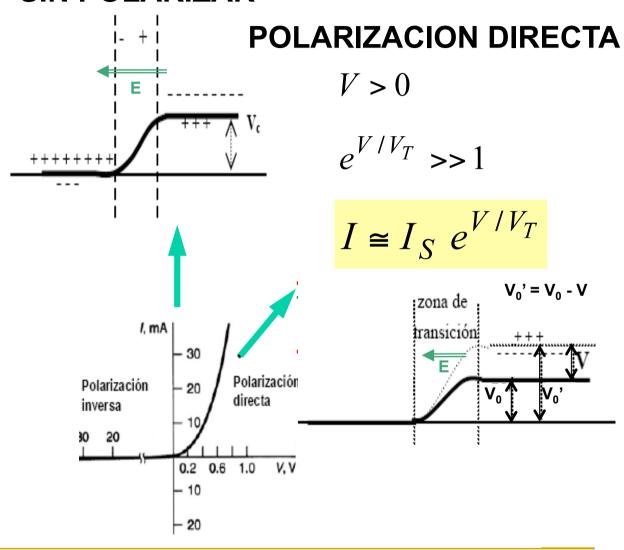

I total:

$$I = I_p + I_n = (K_h + K_e)e^{-V_0/V_T} (e^{V/V_T} - 1)$$

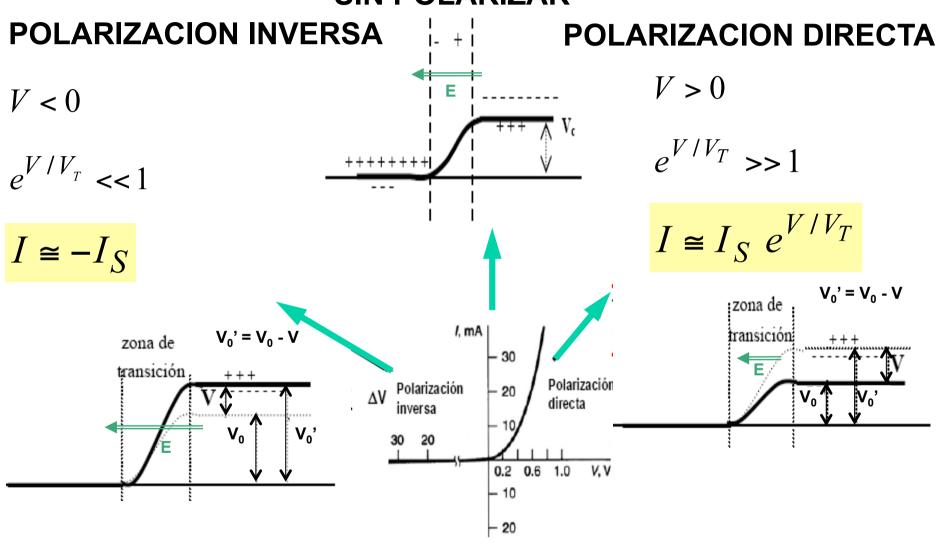
□ I_s = corr. de saturación (= corr. de arrastre)


$$I = I_S \left(e^{V/V_T} - 1 \right)$$

ecuación de Schockley

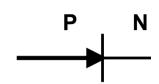


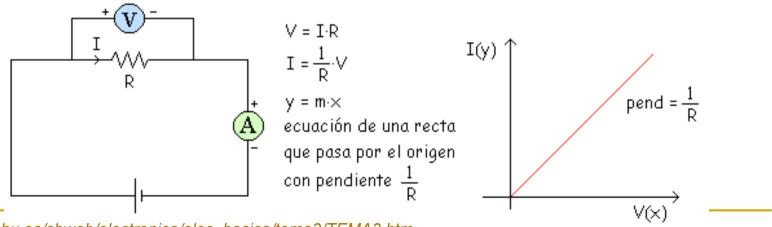
SIN POLARIZAR



SIN POLARIZAR

SIN POLARIZAR

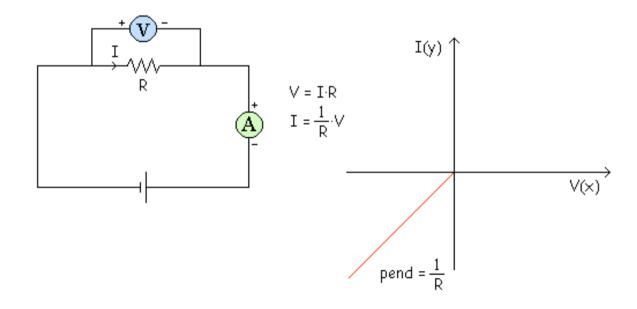



http://www.sc.ehu.es/sbweb/electronica/elec basica/tema3/TEMA3.htm

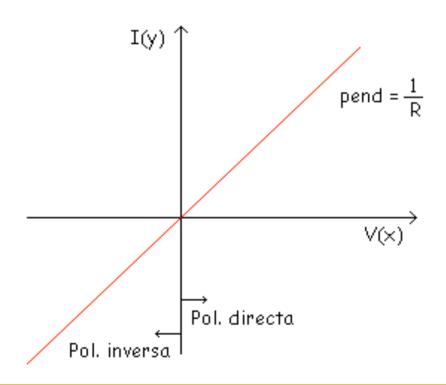
7.4 Diodo en un circuito

Representación: flecha = sentido corriente

- Comportamiento eléctrico de una RESISTENCIA
 - Polarizamos primero en directa y luego en inversa.
 - POLARIZACION DIRECTA: valores con Amperimetro y Voltimetro y se representa la I en función de V



http://www.sc.ehu.es/sbweb/electronica/elec_basica/tema3/TEMA3.htm

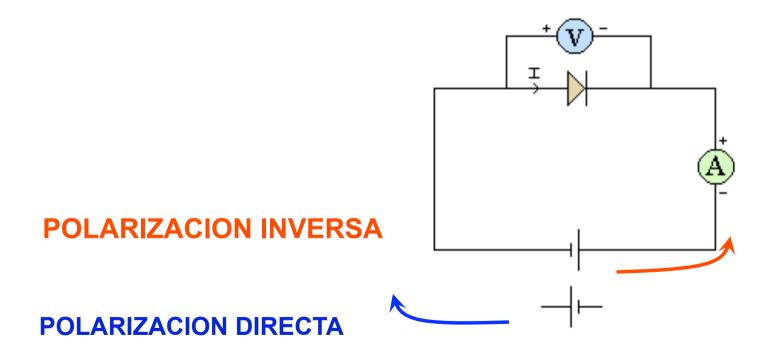

Fundamentos Físicos de la Informática Carmen Martínez Tomás y Nuria Garro Curs 2009-2010

- Comportamiento eléctrico de una resistencia (cont)
 - POLARIZACION INVERSA: mismas ecuaciones, pero las corrientes y las tensiones son negativas.

http://www.sc.ehu.es/sbweb/electronica/elec basica/tema3/TEMA3.htm

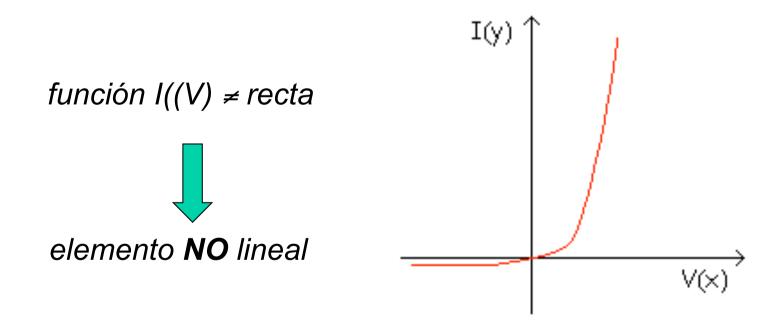
- Comportamiento eléctrico de una resistencia (cont)
 - La función I(V) al final quedará de la siguiente forma:

función I(V) = recta

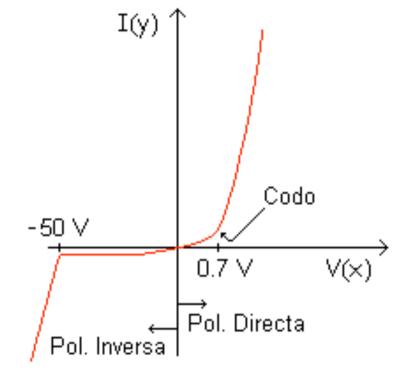


elemento lineal

comportamiento = resistencia



- Comportamiento eléctrico de un DIODO
 - Analizamos de la misma forma el diodo:


- Comportamiento eléctrico de un diodo (cont)
 - POLARIZACION DIRECTA: valores con Amperimetro y Voltimetro y se representa la I en función de V.

- **COMPORTAMIENTO NO IDEAL** fuera de $I = I_S$
 - En POL. <u>DIRECTA</u>, no pasa corriente hasta que $V = V_0$ (barrera de potencial)
 - En POL. <u>INVERSA</u>:
 - V_{ruptura} < V < 0 : la corriente es muy pequeña

$$I \cong -I_S$$

- V >> V_{ruptura}: la corriente se dispara
 - □ Figura: V_{ruptura}: ≈ 50 V

Ruptura:

- Inestabilidad térmica:

 - □ I_s es muy pequeña, pero si V aumenta mucho I_s ⇒ $P = I_S V_D$ aumenta mucho I_s http://victek.is-a-geek.com/Repositorios/Apuntes/
 □ I_s es muy pequeña, pero si V aumenta mucho I_s http://victek.is-a-geek.com/Repositorios/Apuntes/
 □ I_s es muy pequeña, pero si V aumenta mucho I_s http://victek.is-a-geek.com/Repositorios/Apuntes/
 □ I_s es muy pequeña, pero si V aumenta mucho I_s I_s el diode se calienta I_s I_s aumenta diode se calienta I_s $I_$
 - El proceso es progresivo y acumulativo
- Efecto avalancha: se produce para V negativo y |V| > 5 V
 - Si E grande
 - → portadores mucha energía cinética
 → rompen enlaces
 → producen más portadores

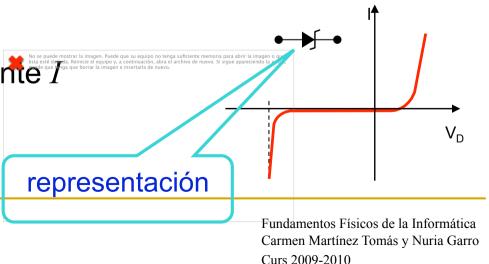
Efecto en cadena

- El dopado controla el fenómeno avalancha:
 - cuanto más débil es, a más V se produce

Ruptura:

- Efecto Zener:
 - Si Na, Nd son muy grandes
 - $ightharpoonup V_0$ grande, bandas muy separadas
 - → electrones y huecos pasan por efecto tunel

http://victek.is-a-geek.com/Repositorios/Apuntes/


Región N

Cruce de la barrera por efecto

 E_{V}

túnel

- Si el campo eléctrico es muy intenso
 - La corriente por efecto túnel es muy grande
- RESULTADO:
 - Para $V > V_Z$ la corriente T aumenta mucho, siendo V_Z constante

