1.4. Obtener una recta que tenga la menor desviación posible de un conjunto de puntos:

Objetivos:

- 1. Obtener la recta que minimice la suma de las desviaciones cuadráticas de las ordenadas de un conjunto de puntos.
- 2. Obtener la recta que minimice la suma de las desviaciones cuadráticas de las abscisas de un conjunto de puntos.
- 3. Valorar el grado de ajuste de la recta de regresión al correspondiente conjunto de puntos.

Actividad 1.36. Si tenemos un conjunto de 20 puntos $\{X_i, Y_i\}_{i=1...n}$, diremos que y=a+bx es la recta *de regresión* de Y sobre X si y sólo si

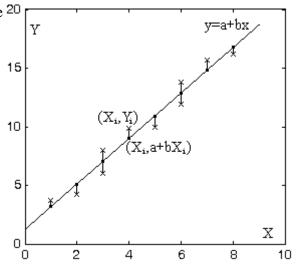
 $\sum_{i=1}^{n} (Y_{i-}(a+bX_{i}))^2$ es mínimo.

Teniendo la cuenta el

<u>Teorema -1.8:</u> si una función derivable f(x,y) tiene un mínimo en (a,b), entonces $f_x'(a,b)=0$ y $f_y'(a,b)=0$.

demostrar

<u>Teorema 1.31:</u> si y=a+bx es la recta de regresión de Y sobre X, entonces $a+b\cdot\mu(X)=\mu(Y),\ a\cdot\mu(X)+b\cdot\mu(X^2)=\mu(XY).$ <u>Teorema 1.32:</u> si y=a+bx es la recta de regresión de Y sobre X, entonces



 $b=c_{XY}/\sigma(X)^2$, $a=\mu(Y)-b\cdot\mu(X)$, dónde $c_{XY}=\mu(XY)-\mu(X)\cdot\mu(Y)$ (covarianza de X y Y).

Actividad 1.37. Teniendo en cuenta el

<u>Teorema -1.9:</u> si para una función f(x,y) derivable hasta segundo orden se cumple $f_x'(a,b)=0$, $f_y'(a,b)=0$, $f_{xx}''(a,b)>0$, $f_{xy}''(a,b)^2 < f_{xx}''(a,b) \cdot f_{yy}''(a,b)$, entonces f(x,y) tiene un mínimo en (a,b)

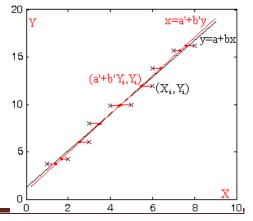
demostrar el

Observemos que el "centro de masas" $(\mu(X), \mu(Y))$ pertenece siempre a la recta de regresión.

<u>Problema 1.19:</u> obtener la recta de regresión del número de calzado sobre la edad en el alumnado asistente a clase; valorarla.

Actividad 1.38. Intercambiando la X y la Y obtenemos el

Teorema 1.34: si $\sigma(Y)^2>0$, b'= $c_{xy}/\sigma(Y)^2$, entonces $x-\mu(X)=b\cdot(y-\mu(Y))$ es la recta de regresión de X sobre Y.



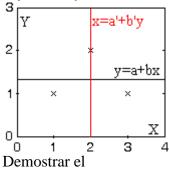
Si $\sigma(X)^2>0$ y $\sigma(Y)^2>0$, ambas rectas de regresión pasarán por el "centro de masas" $(\mu(X),\mu(Y))$, y definimos el *coeficiente de correlación* de X y Y por $\rho_{XY}=c_{XY}/(\sigma(X)\sigma(Y))$.

Demostrar

<u>Teorema 1.35:</u> las rectas de regresión de Y sobre X y de X sobre Y coinciden si y sólo si $\rho_{XY} = \pm 1$.

<u>Teorema 1.36:</u> si $\rho_{XY} = 0$, entonces las rectas de regresión son $y=\mu(Y)$, $x=\mu(X)$ (perpendiculares).

Actividad 1.39. Diremos que dos variables aleatorias X, Y no tienen correlación lineal si y sólo si ρ_{XY} =0; esta condición es equivalente a la de c_{XY} =0 con $\sigma(X)$ >0 y $\sigma(Y)$ >0.



<u>Teorema 1.36:</u> si dos variables aleatorias son independientes, no tienen correlación lineal.

¿La recíproca es cierta? Comprobarlo en el siguiente

Problema 1.20: estudiar la correlación lineal en el $X \mid 1 \mid 2 \mid 3$ ξX e Y son independientes?

Actividad 1.40. Demostrar

Teorema 1.37: $\sigma(X \pm Y)^2 = \sigma(X)^2 + \sigma(Y)^2 \pm 2 \cdot c_{XY}$.

<u>Teorema 1.38:</u> si X,Y son independientes o simplemente no tienen correlación lineal, entonces $\sigma(X\pm Y)^2 = \sigma(X)^2 + \sigma(Y)^2$.

Actividad 1.41. Demostrar, utilizando el Teorema 1.37.

<u>Teorema 1.39:</u> Si y=a+bx es la recta de regresión de Y sobre X, entonces $\sigma(Y-bX)^2 = \sigma(Y)^2(1-\rho_{XY}^2)$.

<u>Teorema 1.40:</u> $-1 \le \rho_{XY} \le 1$.

Si $\rho_{XY}>0$ diremos que X,Y tienen correlación lineal positiva; si $\rho_{XY}<0$, diremos que X,Y tienen correlación lineal negativa; si $|\rho_{XY}|\approx 1$, diremos que X,Y tienen buena correlación lineal; si $\rho_{XY}\approx 0$, diremos que X,Y tienen mala correlación lineal.

<u>Problema 1.21:</u> estudiar la correlación lineal entre el número de calzado y la edad del alumnado asistente a clase; valorarla.

