
#### 4.2.- Espejos y lentes

FINALIDAD: dado un objeto → imagen

s, y

 Objeto o imagen real: aquél para el cual los rayos de luz se cruzan de forma real. El punto de corte se puede recoger en una pantalla



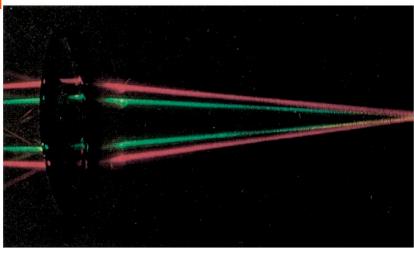
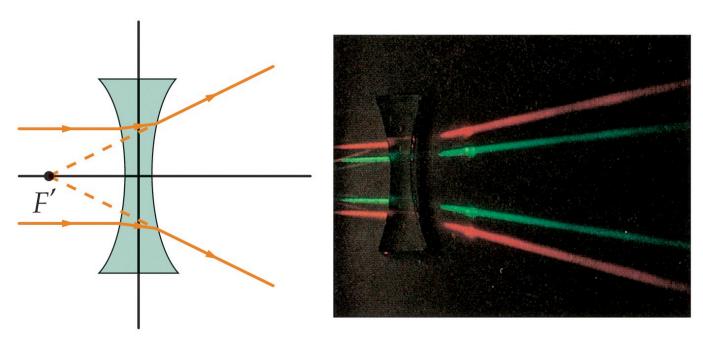
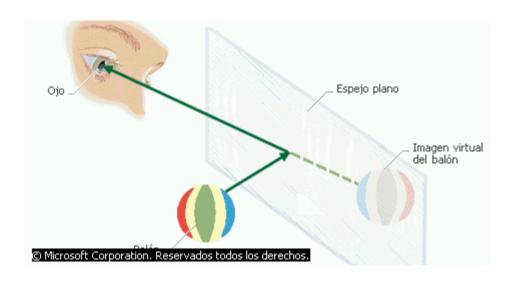




Figura 32.29 Tipler 5<sup>a</sup> Ed.



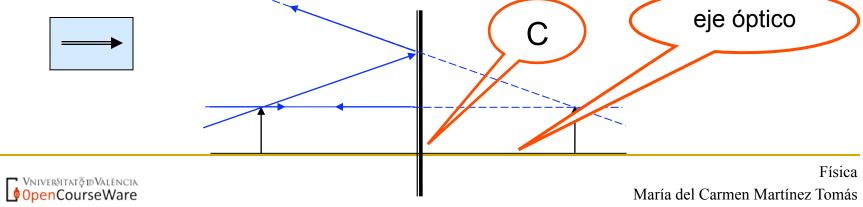
#### 4.2.- Espejos y lentes

 Objeto o imagen virtual: aquél para el cual los rayos de luz no se cruzan de forma real, sino que lo hacen sus prolongaciones







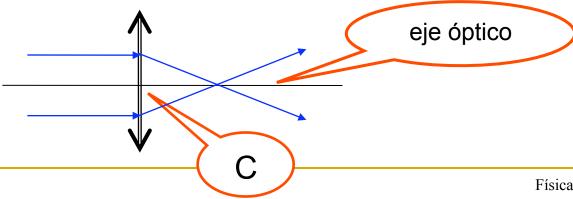


#### 4.2.- Espejos y lentes

- La imagen virtual, al no ser real, no se puede recoger en una pantalla
- En algunos casos, el ojo los puede captar porque recoge esos rayos que no se cortan y elabora una imagen en la retina, gracias a la lente del ojo (el cristalino)



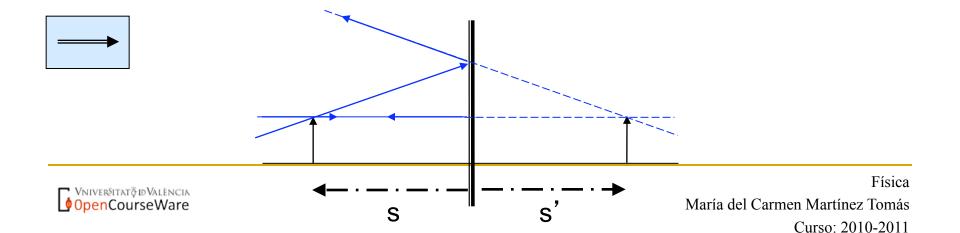
#### 4.2.- Espejos y lentes

- Sentido de la luz: rayo incidente de izquierda a derecha
- Eje óptico: línea horizontal
- Centro óptico del sistema (C): rayos que pasan por él no se desvían
- Origen de posiciones:
  - centro óptico C
  - ESPEJOS: intersección entre el espejo y el eje óptico



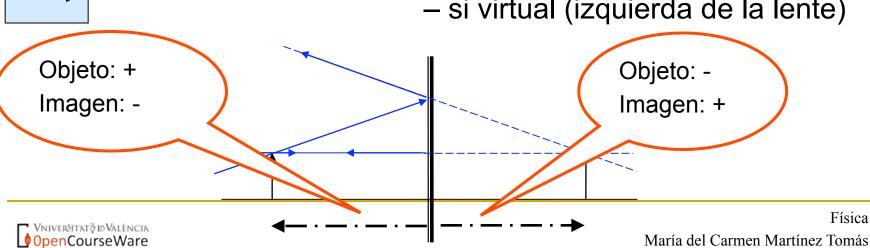

#### 4.2.- Espejos y lentes

- Sentido de la luz: rayo incidente de izquierda a derecha
- Eje óptico: línea horizontal
- Centro óptico del sistema (C): rayos que pasan por él no se desvían
- Origen de posiciones:
  - centro óptico C
  - **LENTES**: intersección entre la lente y el eje óptico



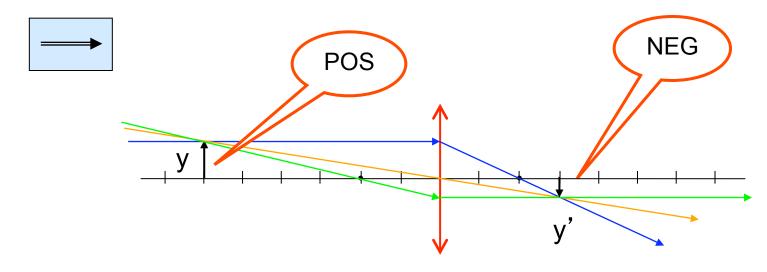

OpenCourseWare




#### 4.2.- Espejos y lentes

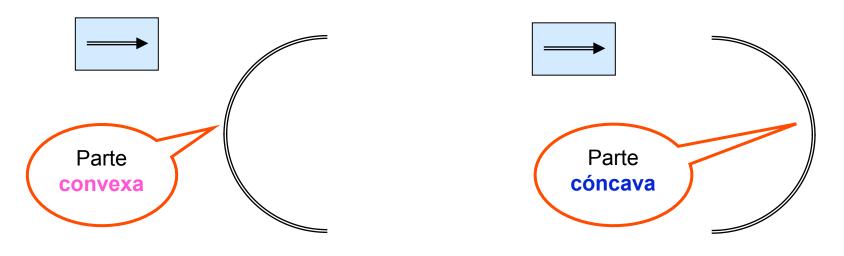
- Posiciones i distancias focales:
  - flecha desde el origen de posiciones hasta el objeto (s) o imagen (s')




#### 4.2.- Espejos y lentes

- Posiciones i distancias focales:
  - flecha desde el origen de posiciones (C) hasta el objeto (s) o imagen (s')
    - + si real (izquierda de la lente) Posición objeto:
      - si virtual (derecha de la lente)
    - <u>Posición imagen</u>: + si real (derecha de la lente)
      - si virtual (izquierda de la lente)




#### 4.2.- Espejos y lentes

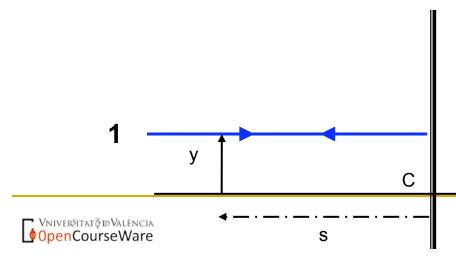
- Segmentos perpendiculares al eje:
  - positivos: hacia arriba
  - negativos: hacia abajo



#### 4.2.- Espejos y lentes

- Radio de curvatura:
  - positivo: si la lente presenta una superficie convexa
  - negativo: si la lente presenta una superficie cóncava
- (NOTA: este convenio es igual que el del Kane)



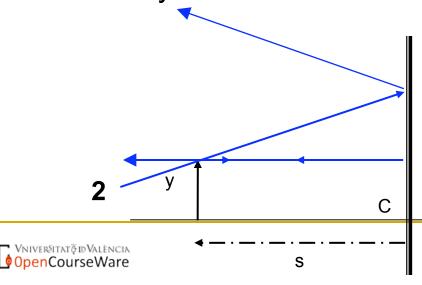

R positivo



R negativo

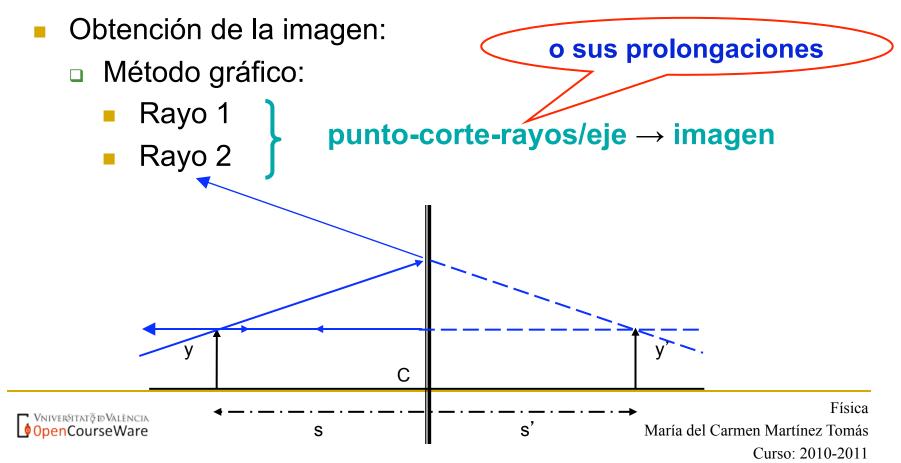
#### 4.2.1 Espejos planos

- Un espejo plano es una superficie plana que refleja totalmente la luz.
- Obtención de la imagen:
  - Método gráfico:
    - Rayo 1

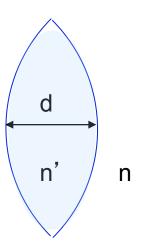



Física

María del Carmen Martínez Tomás


#### 4.2.1 Espejos planos

- Un espejo plano es una superficie plana que refleja totalmente la luz.
- Obtención de la imagen:
  - Método gráfico:
    - Rayo 1
    - Rayo 2

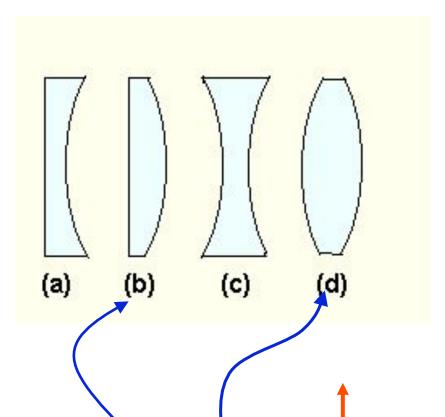



#### 4.2.1 Espejos planos

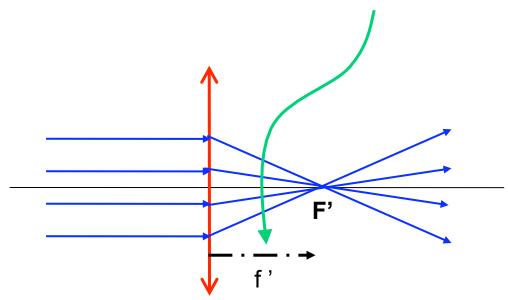
 Un espejo plano es una superficie plana que refleja totalmente la luz.



- Lente:
  - material transparente de índice n'
  - el medio exterior de índice n
  - separados por dos superficies
    - <u>Ejemplo</u>: una bolsa de aire dentro del agua podría ser una lente.
- Lente esférica delgada:
  - dos superficies esféricas, o una esférica y otra plana
  - espesor d pequeño en comparación con los radios de curvatura de las superficies

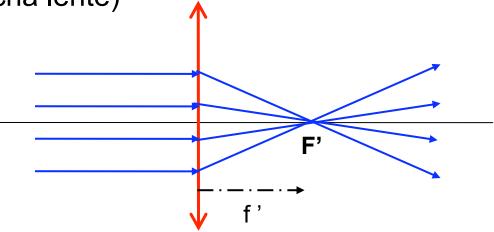



#### 4.2.2 Lentes delgadas


- <u>Tipos de lentes:</u> se denominan según el radio de curvatura de las superficies. Por ejemplo:
  - (a) plano-cóncava
  - (b) plano-convexa
  - (c) bicóncava
  - (d) biconvexa
- Lente convergente:
  - Es más gruesa por el centro que por los bordes (por ejemplo, lentes (b) y (d))
  - Representación: una flecha vertical

http://educar.sc.usp.br/ciencias/fisica/fisicaespanhol/mf4espan.html

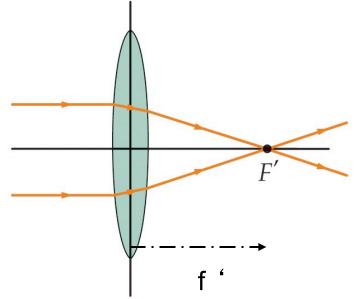





- Foco imagen de una lente convergente:
  - □ Por la izquierda rayos paralelos al eje óptico →
    - → por la derecha se juntan en el foco imagen
  - La posición del foco imagen: <u>distancia focal imagen</u> (f ')






- Foco imagen de una lente convergente:
  - □ Por la izquierda rayos paralelos al eje óptico →
    - → por la derecha se juntan en el foco imagen
  - La posición del foco imagen: <u>distancia focal imagen</u> (f ')
    - Lente convergente: f ' es positiva (imagen real, a la derecha lente)



#### 4.2.2 Lentes delgadas

- Foco imagen de una lente convergente:
  - □ Rayos paralelos al eje óptico → se cortan en foco imagen

Lente convergente:
f ' es positiva
(imagen real, a la derecha lente)



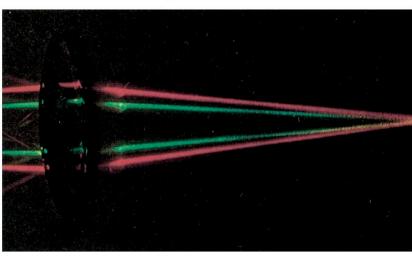
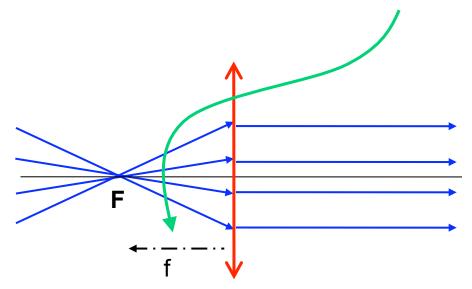
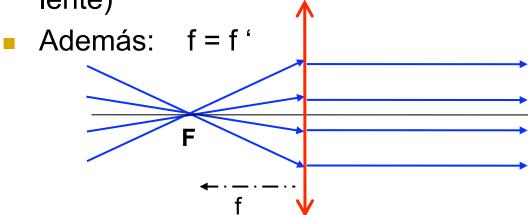



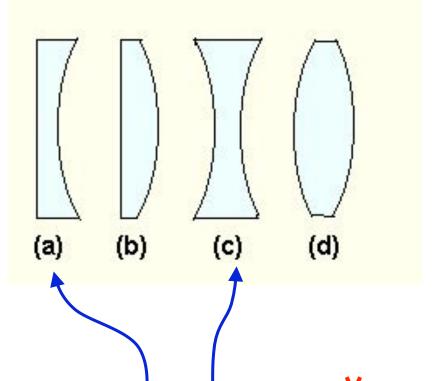

Figura 32.29 Tipler 5<sup>a</sup> Ed.




- Foco objeto de una lente convergente:
  - □ Por la izquierda rayos que pasan por <u>foco objeto</u> (F) → → por la derecha salen paralelos
  - Posición del foco objeto: distancia focal objeto (f)

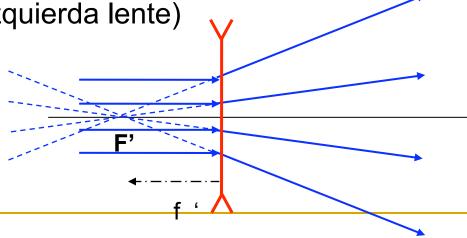





- Foco objeto de una lente convergente:
  - □ Por la izquierda rayos que pasan por <u>foco objeto</u> (F) → por la derecha salen paralelos
  - Posición del foco objeto: distancia focal objeto (f)
    - Lente convergente: f es positiva (objeto real, izquierda lente)

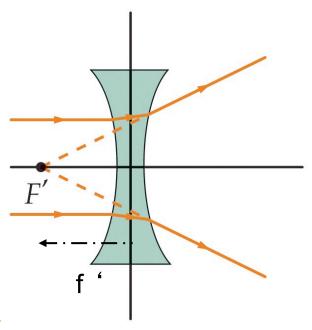


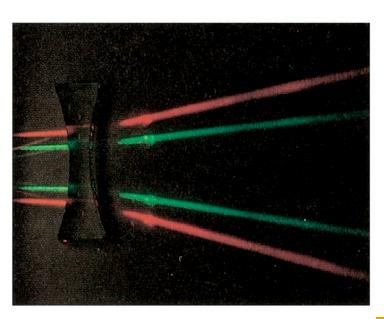
#### 4.2.2 Lentes delgadas


- <u>Tipos de lentes:</u> se denominan según el radio de curvatura de las superficies.
  Por ejemplo:
  - (a) plano-cóncava
  - (b) plano-convexa
  - (c) bicóncava
  - (d) biconvexa
- Lente divergente:
  - Es más delgada por el centro que por os bordes (por ejemplo, lentes (a) y (c))
  - Representación: una flecha vertical

http://educar.sc.usp.br/ciencias/fisica/fisicaespanhol/mf4espan.html



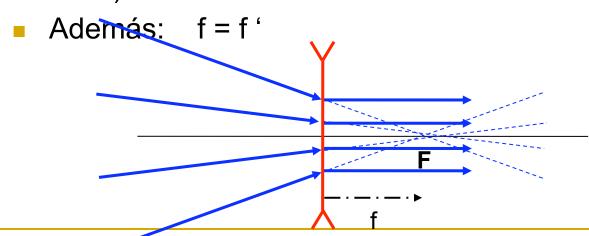




- Foco imagen de una lente divergente:
  - □ Por la izquierda rayos paralelos al eje óptico →
    - → por la derecha salen divergentes
    - → sus prolongaciones se juntan en el foco imagen (F')
  - La posición del foco imagen: distancia focal imagen (f')
    - Lente divergente: f ' es negativa (imagen virtual, a la izquierda lente)





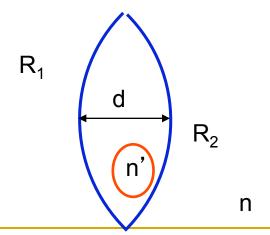
- Foco imagen de una lente divergente:
  - □ Rayos paralelos al eje óptico → prolongación = <u>foco imagen</u>
  - Lente divergente: f 'es negativa (imagen virtual, a la izquierda lente)





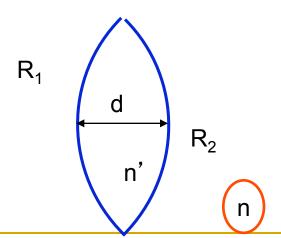






- Foco objeto de una lente divergente:
  - Por la izquierda rayos que se juntarían en foco objeto (F)
    - → por la derecha salen paralelos
  - Posición del foco objeto: distancia focal objeto (f)
    - Lente divergente: f es negativa (objeto virtual, derecha lente)






- Ecuación del constructor de lentes:
  - Distancia focal imagen de una lente:
    - n': índice de la lente

$$\frac{1}{f'} = \frac{n'-n}{n} \left( \frac{1}{R_1} + \frac{1}{R_2} \right)$$

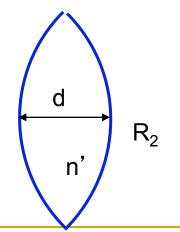


- Ecuación del constructor de lentes:
  - Distancia focal imagen de una lente:
    - n': índice de la lente
    - n: índice del medio

$$\frac{1}{f'} = \frac{n'-n}{n} \left( \frac{1}{R_1} + \frac{1}{R_2} \right)$$



#### 4.2.2 Lentes delgadas


- <u>Ecuación del constructor de lentes:</u>
  - Distancia focal imagen de una lente:
    - n': índice de la lente
    - n: índice del medio
    - R₁: radio de curvatura primera superficie

$$\frac{1}{f'} = \frac{n'-n}{n} \left( \frac{1}{R_1} + \frac{1}{R_2} \right)$$

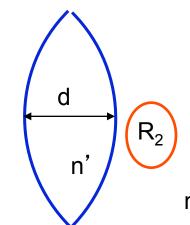
R positivo: si la superficie de la lente es convexa

R negativo: si la superficie de

la lente es cóncava



#### 4.2.2 Lentes delgadas


- <u>Ecuación del constructor de lentes:</u>
  - Distancia focal imagen de una lente:
    - n': índice de la lente
    - n: índice del medio

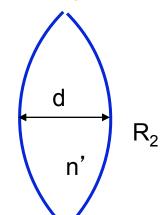
- $\frac{1}{f'} = \frac{n-n}{n} \left( \frac{1}{R_1} + \frac{1}{R_2} \right)$
- R₁: radio de curvatura primera superficie
- R<sub>2</sub>: radio de curvatura segunda superficie

R positivo: si la superficie de la lente es convexa

R negativo: si la superficie de

la lente es cóncava




#### 4.2.2 Lentes delgadas

- Ecuación del constructor de lentes:
  - Distancia focal imagen de una lente:
    - n': índice de la lente
    - n: índice del medio
    - R₁: radio de curvatura primera superficie
    - R<sub>2</sub>: radio de curvatura segunda superficie

R positivo: si la superficie de la lente es convexa

R negativo: si la superficie de

la lente es cóncava



En figura (n' > n)  $R_1, R_2 > 0$   $\rightarrow$  f' positiva  $\rightarrow$  LENTE CONVERGENTE

- Potencia de una lente:
  - Potencia de una lente (P): inversa de la distancia focal imagen:

$$P = \frac{1}{f'}$$
  $P = \frac{1}{f'} = \frac{n'-n}{n} \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$ 

- □ Si f ' en m → P en m<sup>-1</sup>, unidad denominada dioptría (D)
- Signo: el mismo que f '
- Potencia: poder convergente o divergente de una lente