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Multiple Regression Analysis

y = 0 + 1x1 + 2x2 + . . . + kxk + u

4. Further Issues

Curso 2008-2009
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Data Scaling and OLS Statistics

We now return to the issue of changes in scale and 

origin we met before in Chapter 2 and examine the 

effects of rescaling the dependent or independent 

variables on se, t statistics, F statistics, and CI.

As expected, when variables are rescaled, the 

coefficients, se, CI, t and F statistics change in ways 

that preserve all measured effects and testing 

outcomes.

Hence, our conclusions are not affected by the units 

of measurement in the variables involved.
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Data Scaling and OLS Statistics

Consider the following estimated equation:

and now consider what happens to our OLS 

statistics as we change the scale and origin 

of y and of x1.

We can work out these effects by simply 

manipulating the above equation.

0 1 1 2 2
ˆ ˆ ˆŷ x x
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Data Scaling and OLS Statistics

1. Changes in the scale of y: c1.y

 Coefficients are multiplied by c1.

 Standard errors are multiplied by c1.

 Statistical significance is not affected.

 CI change by the same factor, c1.

1 1 0 1 1 1 1 2 2
ˆ ˆ ˆˆ. ( . ) ( . ) ( . )c y c c x c x
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Data Scaling and OLS Statistics

 Residuals are multiplied by c1.

 SSR are multiplied by    .

 Standard Error of the Regression,               ,

is multiplied by c1.

 R2 is not affected, so the overall 

significance of the regression is not 

affected.

2
1c

ˆSER



Francisco J. Goerlich Introductory Econometrics 6

Data Scaling and OLS Statistics

2. Changes in the origin of y: c0 + y

 Only the intercept, 0, is affected. 

 The slope coefficients, measuring partial 

effects, are not affected.

 Residuals are not affected.

 R2 is not affected.

0 0 0 1 1 2 2
ˆ ˆ ˆˆ ( )c y c x x



Francisco J. Goerlich Introductory Econometrics 7

Data Scaling and OLS Statistics

3. Changes in the scale of x1: d1.x1

 The coefficient associated to x1, 1, is 
divided by d1.

 All other coefficients are not affected.

 The standard error of 1 is divided by d1.

 Statistical significance is not affected.

 The CI for 1 change by the factor, 1/d1.

0 1 1 1 1 2 2
ˆ ˆ ˆˆ ( / )( . )y d d x x
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Data Scaling and OLS Statistics

 Residuals are not affected.

 Hence, neither SSR nor the SER are 

affected.

 R2 is not affected, so the overall 

significance of the regression is not 

affected.
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Data Scaling and OLS Statistics

4. Changes in the origin of x1: d0 + x1

 Only the intercept, 0, is affected. 

 The slope coefficients, measuring partial 

effects, are not affected.

 Residuals are not affected.

 R2 is not affected.

0 1 0 1 1 0 2 2
ˆ ˆ ˆ ˆˆ ( ) ( )y d x d x
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Data Scaling and OLS Statistics

Conclusion: Changes in scale and/or origin 

does not affect to any substantial part of the 

regression.

In particular, statistical significance and 

interpretation of coefficients is not affected 

by data scaling.

Note that to make our equation invariant to 

the origin of the variables we need an 

intercept in our equation.
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Data Scaling and OLS Statistics

This analysis shows clearly that if variables 

appear in logarithmic form, changing the units 

of measurement does not affect the slope 

coefficients.

This follows from the fact that

so only the intercept is affected in these cases.

1 1 1

1 1 1

log( . ) log( ) log( ) 0

log( . ) log( ) log( ) 0j j

c y c y c

d x d x d
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Beta Coefficients

Sometimes in econometric applications, a 

key variable is measured on a scale that is 

difficult to interpret, for example, test 

scores, synthetic indexes,…

In such cases, we can be interested in see 

what happens to y when the corresponding 

independent variable varies by one 

standard deviation.
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Beta Coefficients

Sometimes, it is useful to obtain regression 

results when all variables involved, y as well 

as the x´s, have been standardized.

To standardize a variable subtracts its mean 

and divide by its standard deviation.

Why is standardization useful?

Lets see what this transformation implies for 

the coefficient estimates.
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Beta Coefficients

Averaging this equation and subtracting

Simple algebra gives us the estimated equation 

in standardized form

0 1 1 2 2
ˆ ˆ ˆ ˆ ˆi i i k ik iy x x x u

1 1 1 2 2 2
ˆ ˆ ˆ ˆ( ) ( ) ( )i i i k ik k iy y x x x x x x u

1 1 1 2 2 2
1 2

1 2

ˆ ˆ ˆ ˆ( ) ( ) ( )ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

i i i k ik k i
k

y y y y k y

y y x x x x x x u

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Beta Coefficients

Which we can rewrite as

where z denotes an standardized variable, the z-

score,    denotes the error and the new 

coefficients are

These      are traditionally called standardized 

coefficients or beta coefficients.

1 1 2 2
ˆ ˆ ˆ ˆy k kz b z b z b z e

ê

ˆˆ ˆ for 1,2, ,
ˆ

j
j j

y

b j k

ˆ
jb
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Beta Coefficients

The meaning of these coefficients is as follows: If xj

increases by one standard deviation, then    changes 

by      standard deviations, holding all other 

variables constant.

Thus, we are measuring effects not in terms of the 

original units of y and xj, but in standard deviation 

units.

Because the equation in terms of the z-score makes 

the scale of the regressors irrelevant, this equation 

puts the explanatory variables on equal footing.

ŷ
ˆ

jb
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Beta Coefficients

In a standard OLS equation, it is not possible to 

simply look at the size of different coefficients and 

conclude that the explanatory variable with the 

largest coefficient is “the most important”.

We just have seen that the magnitudes of 

coefficients can be changed at will by changing the 

scale of xj.

But, when each xj has been standardized, comparing 

magnitudes of the resulting beta coefficients is 

more compelling.
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Functional Form

OLS can be used for modeling relationships 

that are not strictly linear in x and y by using 

nonlinear functions of x and y, if the model 

is still linear in the parameters.

We consider some possibilities that often 

appear in applied work:

1. log´s of x and y.

2. quadratic forms of x.

3. Interactions of x variables.
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Proportions and Percentages

Remember that:

1. Proportional change:

2. Percentage change:

3. Elasticity:

1 0

0 0

x x x

x x

0

100. %
x

x
x

0

0

%
.

%

y x y

x y x
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Proportions and Percentages

4. Changes in logarithms:

Hence,

1 0
1 0

0 0

log( ) log( ) log( )
x x x

x x x
x x

100. log( ) %.x x
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A Linear Model for log(y)

Consider the model

log(y) = 0 + 1x + u

What is the meaning of 1 in this model?

If u = 0, then x has a linear effect on log(y):

log y) = x

or,

y = (100. x

i.e. 100. is the percentage change in y by 
unit of x.
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A Constant Elasticity Model

Consider the model

log(y) = 0 + 1log(x) + u

What is the meaning of 1 in this model?

If u = 0, then log(x) has a linear effect on 

log(y):

log y) = log(x)   y = x

i.e. is the elasticity of y with respect to x.
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Functional Forms Involving logs

Model
Dependent

Variable

Independent

Variable

Interpretation

of 1

level-level y x y = x

level-log y log(x) y = ( x

log-level log(y) x y = (100. x

log-log log(y) log(x) y = x
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Functional Form

Important: While the mechanics of the 

linear regression does not depend on how y

and the x´s are defined, the interpretation of 

the coefficients does depend on their 

definitions.
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Why use log models?

 Using log´s leads to coefficients with appealing 

interpretations, i.e. elasticity or semi-elasticity.

 Models with log´s are invariant to the scale of the 

variables, since they measure proportional changes.

 For models with y > 0, using log(y) as the dependent 

variable often satisfy the CLM assumptions more 

closely than models using the level of y.

 For models with y > 0, the conditional distribution is 

often heteroskedastic or skewed, while log(y) is 

much less so.
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Why use log models?

 Taking log´s usually narrows the range of the 

variable. This makes estimates less sensitive to 

outlying (or extreme) observations on the dependent 

or independent variables.

 One limitation of the log is that it can not be used if 

a variables can take zero or negative values.

 One drawback to using a dependent variable in log 

form is that it is more difficult to predict the original 

variable. The original model allows us to predict 

log(y), not y.
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Why use log models?

 Also it is not legitimate to compare R2 from 

models where y is the dependent variable in 

one case and log(y) is the dependent variable 

in the other. These measures explained 

variations in different variables.

 Important: This is a general rule, the R2

cannot be used to compare models with 

different dependent variable.
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Some Rules of Thumb

What types of variables are often used in log form?

 Variables in money terms that must be positive.

 Very large variables, such as population.

What types of variables are often used in level 

form?

 Variables measured in years.

 Variables that are a proportion or percent, i.e. 

inflation, interest rates.
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Quadratic Models

A quadratic model is of the form

y = 0 + 1x + 2x
2 + u

Quadratic functions are also used quite 

often in applied economics to capture 

decreasing or increasing marginal effects.

Important: 1 does not measure the change 

in y with respect to x; it makes no sense to 

hold x2 fixed while changing x.
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Quadratic Models

If u = 0 then,

the marginal effect of x on y depends linearly 

on the value of x.

The estimated slope is 1 + 2x.

In a particular application this marginal effect 

should be evaluated at interesting values of x.

1 2 1 2( 2 ). 2
y

y x x x
x
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More on Quadratic Models

Suppose that 1 > 0 and 2 < 0.

Then y is increasing in x at first, but will 

eventually turn around and be decreasing in 

x.

The turning point will be at

1*

22
x
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More on Quadratic Models

Suppose that 1 < 0 and 2 > 0.

Then y is decreasing in x at first, but will 

eventually turn around and be increasing in 

x.

The turning point will be at

which is the same as before.

1*

22
x
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Interaction Terms

Sometimes, it is natural for the partial effect, 

elasticity or semi-elasticity of the dependent 

variable with respect to an explanatory 

variable to depend on the magnitude of yet 

another explanatory variable.

These effects can be modeled through 

interaction terms, xi xj.
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Interaction Terms

Consider the model

y = 0 + 1x1 + 2x2 + 3x1x2 + u

In this case 1 is not the partial effect of x1

on y, because there is an interaction term, 

x1x2.

If u = 0 then,

1 3 2 1 1 3 2

1

( ).
y

y x x x
x
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Interaction Terms

The partial effect of x1 on y depends linearly 

on x2.

In summarizing the effect of x1 on y, we 

must evaluate the above expression at 

interesting and representative values of x2, 

for examples the sample mean of x2.
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Functional Form

This shows clearly that the partial effects of 

xj on y are constant only if the model is 

linear in variables. In all other cases the 

interpretation of the coefficients does 

depend on the definitions of the variables.



Francisco J. Goerlich Introductory Econometrics 37

R-Squared

We found before the R2 as a goodness of fit

measure.

R2 is simply an estimate of how much variation in y

is explained by the x´s, and even it is intuitively 

obvious that a higher R2 is preferable to a lower 

one, nothing about the classical model assumptions 

requires that R2 be above any particular value.

A small R2 does imply that the error variance is 

large relative to the variance of y, which means that 

the j are not precisely estimated.
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R-Squared

But remember, that a large error variance can be 

offset by a large sample size, so if n is large enough, 

we may be able to precisely estimate the partial 

effects even though we have not controlled for 

many unobserved factors.

Also that the relative change in the R2, when 

variables are added to an equation, is very useful: 

the F statistic for testing the joint significance of the 

added variables crucially depends on the difference 

in the R2 between the unrestricted and the restricted 

models.
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Adjusted R-Squared

Recall that the R2 will always increase as more 

variables are added to a given model.

This can lead to the false impression that models 

with more explanatory variables are always 

preferred, but this is completely false. If we add 

variables to a given model, R2 will never decrease, 

even if these variables are not significant.

To avoid this algebraic fact we can “adjust” the R2

in a way that takes into account the number of 

variables included in a given the model.
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Adjusted R-Squared

To see how the usual R2 might be adjusted, it 

is usefully written as

This expression reveals what R2 is actually 

estimating.

The population R2 is defined as 

2 SSR
1

SST

n
R

n

2

2
1

u

y
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Adjusted R-Squared

This is what R2 is supposed to be estimating.

However, we have better estimates for these 

variances that the ones used in the R2. So lets 

use unbiased estimates for these variances

This is the adjusted R2.

2 2SSR ( 1) 1
1 1 1

SST ( 1) 1

n k n
R R

n n k
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Adjusted R-Squared

The primary attractiveness of       is that it 

imposes a penalty for adding additional 

independent variables to a model.

If an independent variable is added to a 

model then SSR falls, but so does the df in 

the regression, n k 1. So      can go up or 

down when a new independent variable is 

added to a regression.

2R

2R
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Adjusted R-Squared

An interesting algebraic fact is that if we add 

a new independent variable to a regression 

equation,      increases if, an only if, the t

statistic on the new variable is greater than 

one in absolute value.

Thus we see immediately that using      to 

decide whether a certain independent 

variable belongs in a model gives us a 

different answer than standard t testing.

2R

2R
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Goodness of Fit

It is important not to focus too much on R2 or     ,

and lose insights from economic theory and 
common sense.

Goodness of fit by itself is not an objective.

If economic theory clearly predicts a variable 
belongs to a model, generally leave it in.

Don’t try to include a variable that prohibits a 
sensible interpretation of the variables of interest. 
Remember the ceteris paribus interpretation of 
multiple regression.

2R
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Goodness of Fit

Provided the above conditions are fulfilled, 

you can use the R2 to measure the goodness 

of fit of models with the same number of 

independent variables and the same y:

(1) y = 0 + 1x1 + 2x2 + u

(2) y = 0 + 1x1 + 3x3 + u

These are nonnested models, because 

neither equation is a special case of the other.
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Goodness of Fit

You can use the      to measure the goodness 

of fit of models with different number of 

independent variables and the same y:

(1) y = 0 + 1x1 + 2x2 + 3x3 + 4x4 + u

(2) y = 0 + 1x1 + 3x3 + 4log(x4) + u

Explanatory variables can appear with 

different functional form, but not y.

2R
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Goodness of Fit

You cannot use neither the R2 nor      to 

measure the goodness of fit of models with 

different functional forms for the dependent 

variable, y:

(1) y = 0 + 1x1 + 2x2 + 3x3 + 4x4 + u

(2) log(y) = 0 + 1x1 + 4log(x4) + u

The reason is simple: the variation to be 

explained, SST, is different for both models.

2R
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Prediction

Suppose we have estimated the equation

When we plug in particular values of the x´s, we 

obtain a prediction for y, which is an estimate of the 

expected value of y given the particular values for 

the x´s.

Let c1, c2,…, ck denote the particular values for 

each of the k independent variables; these may or 

may no correspond to an actual data point in our 

sample.

0 1 1 2 2
ˆ ˆ ˆ ˆˆ k ky x x x
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Prediction
The parameter we would like to estimate is

The natural estimator of 0 is

This is easy to compute once the model has been 

estimated.

Predictions are certainly useful, but they are 

subject to sampling variation, so what about its 

uncertainty?

0 1 1 2 2

0 1 1 2 2

E( | , ,..., )k k

k k

y x c x c x c

c c c

0 0 1 1 2 2
ˆ ˆ ˆ ˆ ˆ

k kc c c
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Prediction

It is natural to construct a confidence interval for 0

which is centered at     .

To obtain a CI for 0, we need a standard error for        

Then, under MLR6 we can construct a 95% CI as                     

, where t.025 is the 97.5th percentile in 

the tn k 1 distribution.

Otherwise, with a large df, we can construct a 95% 

CI using the rule of thumb                       , since for 

large n k 1 then t.025 1.96

0 .025 0
ˆ ˆ. ( )t se

0
ˆ

0
ˆ

0 0
ˆ ˆ2. ( )se
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Prediction

How do we obtain the se of     ?

If the computer software does not do the job for you, 

note that all you need is a se of a linear combination 

of the OLS estimators, just as in hypothesis testing, 

so the same trick we used there works here.

Write 0 = 0 1c1 2c2 . . . kck, and plug 

this into the equation

y = 0 + 1x1 + 2x2 + . . . + kxk + u

to obtain

y = 0 + 1(x1 c1) + 2(x2 c2) + . . . + k(xk ck) + u

0
ˆ
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Prediction

In other words, we subtract the value cj from each 

observation on xj, and then we run the regression of

yi on (xi1 c1), (xi2 c2), ... , (xik ck),  i = 1,…,n

The predicted value, and more importantly, its se, 

are obtained from the intercept, or constant, in this 

regression.

Note that the se will be smallest when the c´s are 

equal to the mean of the x´s.

This result is not surprising, since intuitively we 

have less uncertainty near the middle of our data.
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Prediction: CI

y

xcx

lower limit of

confidence interval

upper limit of confidence interval

confidence interval

for 0

This illustrates graphically the confidence interval for predictions in the SLR case.

0
ˆ

0 1
ˆ ˆŷ x
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Prediction
The previous method allows us to put a CI around the 
OLS estimate of E(y|x1,x2,…,x3), for any values of the 
x´s.

In other words, we obtain a CI for the average value of 
y for the subpopulation with a given set of covariates.

But a CI for the average unit in the subpopulation is 
not exactly the same as a CI for a particular unit in 
the subpopulation.

In forming a CI for an unknown outcome on y, we must 
account for another very important source of variation: 
the variance in the unobserved error, which measures 
our ignorance on the unobserved factors that affect y.



Francisco J. Goerlich Introductory Econometrics 55

Prediction Interval

Let y0 denote the value for which we would like to 

construct a CI, usually called prediction interval. 

Let                    be the new values of the x´s, which 

we observe, and let u0 be the unobserved error. 

Therefore, we have

As before, our best point prediction of y0 is the 

expected value of y0 given the explanatory variables, 

which we estimate from the OLS regression line

0 0 0
1 2, ,..., kx x x

0 0 0 0 0
0 1 1 2 2 ... k ky x x x u

0 0 0 0
0 1 1 2 2

ˆ ˆ ˆ ˆˆ ... k ky x x x
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Prediction Interval

The prediction error in using      to predict y0 is

Because OLS estimators are unbiased and E(u0) = 0, 

then                 . So the expected prediction error is 

zero.

In finding the variance of     , note that u0 is 

uncorrelated with      (why?).

Therefore, the variance of the prediction error

(conditional on the x´s) is the sum of the variances

0 0 0 0 0 0 0 0
0 1 1 2 2ˆ ˆ ˆ( ... )k ke y y x x x u y

0ŷ

0ˆ( ) 0E e

0ê
0ŷ

0 0 0 0 2ˆ ˆ ˆ( ) ( ) ( ) ( )Var e Var y Var u Var y
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Prediction Interval
There are two sources of variation in    .

1. The sampling error in    , which arises because we 
have estimated the j.

2. The ignorance of the unobserved factors that affect 
y, which is reflected in 2.

Under the CLM assumptions      is also normally 
distributed (conditional on the x´s). And using 
unbiased estimators of               and , we can 
define the se of      as

0ê
0ŷ

0ˆ( )Var y

0ê

1
2 20 0 2ˆ ˆ ˆ( ) ( )se e se y

0ê
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Prediction Interval

Using the same reasoning for the t statistic of the     ,

has a t distribution with n k 1 df. Therefore,

where t.025 is the 97.5th percentile in the tn k 1

distribution.

Plugging in                   and rearranging gives a 95% 

prediction interval for y0:                         .

ˆ
j

0

0

ˆ

ˆ( )

e

se e
0

.025 .0250

ˆ
Pr .95

ˆ( )

e
t t

se e

0 0 0ˆ ˆe y y
0 0

.025ˆ ˆ. ( )y t se e
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Prediction Interval

Usually the estimate of 2 is much larger than the 

variance of the prediction.

Thus, this prediction interval will be much wider 

than the simple CI for the prediction.

As before with a large df, we can construct a 95% 

prediction interval using the rule of thumb

, since for large n k 1 then t.025 1.96.0 0ˆ ˆ2. ( )y se e
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Residual Analysis

Sometimes, it is useful to examine the residuals for 

the individual observations. This process is known 

as residual analysis.

Big residuals, either positive or negative, can be 

informative about special events or characteristics 

of individual observations.

Extreme residuals, greater in absolute value than 3 

standard error of the regression, are called outliers.

Outliers merit some consideration since they can 

influence estimation results.
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Predicting y in a log(y) model

Define logy = log(y), and consider the problem of 

predicting y when the estimated model is

logy = 0 + 1x1 + 2x2 + . . . + kxk + u

Given OLS estimators we predict logy as

Simple exponentiation,                       , will 

systematically underestimate the expected value of 

y.

Instead, we need to scale this up by an estimate of 

the expected value of exp(u).

0 1 1 2 2
ˆ ˆ ˆ ˆˆ  k klogy x x x

ˆ ˆexp( )y = logy
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Predicting y in a log(y) model

Note that if u~N(0, 2), then 

Under the CLM assumptions MLR.1 through 

MLR.6, then

This equation shows that, under normality, the 

simple adjustment needed to predict y is

where     is the unbiased estimator of 2.

Because 

2
0 1 1 2 2( | ) exp( /2).exp( )x  k kE y x x x

2

(exp( )) exp
2

E u

2ˆ ˆ ˆexp( /2).exp( )y= logy
2ˆ

2 2ˆ ˆ0 exp( / 2) 1
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Predicting y in a log(y) model

The above prediction is not unbiased, but it is 

consistent. And in many cases works pretty well.

However, it does rely on the normality of u.

It is useful to have a prediction that does no rely on 

normality. If we just assume that u is independent 

of the x´s, then we have

where 0 is the expected value of exp(u), which 

must be greater than unity.

0 0 1 1 2 2( | ) .exp( )x  k kE y x x x



Francisco J. Goerlich Introductory Econometrics 64

Predicting y in a log(y) model

Given an estimate     , we can predict y as

It turns out that a consistent estimator of      is 

easily obtained:

1. Obtain the fitted values

2. Create 

3. Regress y on     , without an intercept. The 

coefficient on     , the only coefficient there is, is 

the estimate of 0, i.e. E(exp(u)).

4. Once      is obtained, predict y as                            . 

0ˆ

0ˆˆ ˆ.exp( )y= logy

0ˆ

ˆ ilogy

ˆ ˆexp( )i im logy

m̂

m̂

0ˆ 0ˆˆ ˆ.exp( )y= logy
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Comparing log(y) and y models

As mentioned before, R2 cannot be used to compare 

models with different dependent variables. In 

particular, it cannot be used to compare models with 

y and log(y) as dependent variables.

If the goal is to find a goodness-of-fit measure in the 

log(y) model that can be compared with the R2 from 

a model where y is the dependent variable we can 

use the previous results.

After running the regression of y on      through the 

origin, we obtain the fitted values for this regression,

m̂

0ˆˆ ˆ.i iy = m
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Comparing log(y) and y models
Then, we find the sample correlation between     and 
the actual yi in the sample.

The square of this can be compared with the R2 we 
get by using y as the dependent variable in a linear 
regression model.

Remember that the R2 in the fitted equation

is just the squared correlation between yi and     . 

ˆiy

ˆiy
0 1 1 2 2

ˆ ˆ ˆ ˆˆ k ky x x x


