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Multiple Regression Analysis

y = β0 + β1x1 + β2x2 + . . . + βkxk + u

1. Estimation
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Multiple Regression Analysis
The main drawback of the SLR analysis for 
empirical work is that it is very difficult to 
draw “ceteris paribus” conclusions about how 
x affects y.
Multiple Linear Regression (MLR) analysis is 
more amenable to “ceteris paribus” analysis 
because it allows us to explicitly control for 
many other factors that simultaneously affect 
the dependent variable, y.
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A Model with Two Regressors

Consider the population model
y = β0 + β1x1 + β2x2 + u

β0 the intercept,
β1 measures the ∆y with respect to x1, 
holding other factors fixed, and
β2 measures the ∆y with respect to x2, 
holding other factors fixed.
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A Model with Two Regressors

In this model the key assumption about 
how u is related to the regressors is

E(u|x1,x2) = 0

As in the SLR the important part of the 
assumption is E(u|x1,x2) = E(u), given that, 
as long as an intercept, β0, is included in 
the equation, we can assume that E(u) = 0
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A Model with Two Regressors

Note that this is equivalent to
E(y|x1,x2) = β0 + β1x1 + β2x2
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A Model with Two Regressors
This model can accommodate fairly arbitrary 
forms of dependence between y and x.
For example,

y = β0 + β1x + β2x2 + u

Now ∆y ≈ (β1 + 2β2x)∆x.
So, in a particular application, the definitions 
of the independent variables are crucial, but 
for theoretical developments we can ignore 
these details.
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A Model with k Regressors
There is no need to stop with two regressors.

y = β0 + β1x1 + β2x2 + . . . + βkxk + u
β0 the intercept,
βj, j = 1,2,…,k; are usually referred as slope 
parameters, that measure the ∆y with respect 
to xj, holding other factors fixed.
The variable u is the error term or 
disturbance. It contains factors other than
x1, x2 ,. . . , xk that affect y.
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A Model with k Regressors
The MLR has many similarities with the SLR.
We have the same terminology.
As before, the “linear” term in MLR means 
that the population model is linear in 
parameters, and not necessarily in variables.
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A Model with k Regressors
The key assumption now about how u is 
related to the regressors is 

E(u|x1,x2,...,xk) = 0
At a minimum, this requires that all factors in 
u be uncorrelated with the regressors.
It also means that we have correctly 
accounted for the functional relationships 
between y and x1,x2,...,xk.
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Ordinary Least Squares
Basic idea of regression is to estimate the 
population parameters, (β0 , β1,…, βk), from a 
sample.
Let {(yi ,xij): i = 1,…,n; j = 1,…,k} denote a 
random sample of size n from the population.
For each observation in this sample, it will be 
the case that

yi = β0 + β1xi1 + β2xi2 + . . . + βkxik + ui
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Deriving OLS Estimates
To derive the OLS estimates we need to 
realize that our key assumption implies that

1. E(u) = 0
2. E(xju) = 0, j = 1,2,…,k

A set of k+1 population moment conditions 
that can be imposed on the sample.
This give us a set of k+1 equations in k+1 
unknowns.
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Deriving OLS Estimates
An alternate approach is to minimize a sum 
of squares residuals,

First order conditions for this problem give 
us a set of k+1 equations in k+1 unknowns.
See Appendix 3A.1 for a derivation.
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Deriving OLS Estimates
In any case the system we have to solve is:
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Deriving OLS Estimates
A set of k+1 equations in k+1 unknowns.
This system is known as the normal 
equations.
We must assume that this system has a 
unique solution in terms of the        , 
j = 0,1,…,k.
Note that for     the solution is

ˆ 'sjβ

0β̂

0 1 1 2 2
ˆ ˆ ˆ ˆ... k ky x x xβ = − β − β − − β



Francisco J. Goerlich Introductory Econometrics 15

More on the OLS estimates
Given the OLS estimates,                        , the
fitted value for y when xj = xij , ∀ j is given by

This is the OLS regression line or Sample 
Regression Function (SRF). The value that 
the model predicts for y when xj = xij, ∀j.
There is a fitted value for each observation in 
the sample.

0 1 2
ˆ ˆ ˆ ˆ, , ,..., kβ β β β
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More on the OLS estimates
The residual for observation i is the 
difference between the actual yi and its fitted 
value,    ,

Again there are n residuals.
The residual, û, is an estimate of the error 
term, u, and is the difference between the 
fitted line (SRF) and the sample point.
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More on the OLS estimates
There is a residual for each observation.
If           , then            , which means that, for 
this observation yi is underpredicted.
If           , then            , which means that, for 
this observation yi is overpredicted.

ˆ 0iu > ˆi iy y<

ˆ 0iu < ˆi iy y>
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Interpreting Multiple Regression

More important than the details underlying 
the computation of the          is the 
interpretation of the estimated equation.

The estimates,        , have a partial effect, or 
“ceteris paribus” interpretations.

ˆ 'sjβ

ˆ 'sjβ
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Interpreting Multiple Regression
From

so holding x2,...,xk fixed implies that

The coefficient on x1 measures the change in 
due to a one-unit increase in x1, holding 
x2,...,xk fixed.

0 1 1 2 2

1 1 2 2

ˆ ˆ ˆ ˆˆ ...
ˆ ˆ ˆˆ ...

k k

k k

y x x x

y x x x

= β + β + β + + β

∆ = β ∆ + β ∆ + + β ∆

1 1
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Interpreting Multiple Regression
Thus, we have controlled the variables 
x2,...,xk when estimating the effect of x1 on y.

That is, each       has a “ceteris paribus”
interpretation. So including additional 
regressors allows us to obtain partial effects.

ˆ
jβ
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“Holding other Factors Fixed”
The power of multiple regression analysis is 
that it allows us to do in nonexperimental
environments what natural scientists are able 
to do in a controlled laboratory setting: keep 
other factors fixed.



Francisco J. Goerlich Introductory Econometrics 22

Algebraic Properties of OLS 

The sum of the OLS residuals is zero.
Thus, the sample average of the OLS 
residuals is zero as well.
The sample covariance between the 
regressors and the OLS residuals is zero.
The OLS regression line always goes 
through the mean of the sample.
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Algebraic Properties (precise)
1

1

1

1 2

0 1 1 1 2

ˆˆ ˆ(1) 0 0

ˆ(2) 0 1,2,...,
(3) ( , , ,..., ) is on the regression line

ˆ ˆ ˆ ˆ...

n
i in

i i

n
i ij i

k

k k

uu u
n

x u j k
y x x x

y x x x

=
=

=

Σ
Σ = ⇒ = =

Σ = ∀ =

⇒ = β + β + β + + β



Francisco J. Goerlich Introductory Econometrics 24

Algebraic Properties (precise)

1

1
1

1

ˆ ˆWriting we have
ˆ ˆ(1) 0

ˆ 0
ˆ ˆ(1) (2)  0

ˆ 0
this last one implies that the sample covariance

ˆ ˆbetween fitted values, ,  and residuals, ,  is zero.

i i i

n
i i

n
i i n

i i in
i ij i

i i

y y u

u y y

u
y u

x u j

y u

=

=
=

=

= +

Σ = ⇒ =

⎫Σ = ⎪+ ⇒ Σ =⎬
Σ = ∀ ⎪⎭



Francisco J. Goerlich Introductory Econometrics 25

Algebraic Properties
Thinking of each observation as being made 
up of an explained part, and an unexplained 
part,                   , we can view OLS as 
decomposing each yi into two parts, a fitted 
value and a residual. The fitted values and 
residuals are uncorrelated in the sample.

ˆ ˆi i iy y u= +
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Sum of Squares Decomposition
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Define:
1. Total Sum of Squares (SST)

2. Explained Sum of Squares (SSE)
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Sum of Squares Decomposition
SST is a measure of the total sample variation 
in the yi.
It can be shown that total variation in y, SST, 
can always be expressed as the sum of the 
explained variation, SSE, and the unexplained 
variation, SSR. Thus

SST = SSE + SSR
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Proof that SST = SSE + SSR
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Given the above properties, so SST = SSE + SSR
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Goodness-of-Fit
How well our SRF fits our sample data?

We can compute the fraction of the total sum 
of squares (SST) that is explained by the 
model (SSE), call this the R-squared, R2, of 
regression:

R2 = SSE/SST = 1 – SSR/SST
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Goodness-of-Fit
100.R2 is the percentage of the sample 
variation in y that is explained by      (the 
model).
R2 ∈ [0,1]
If R2 = 1, then we have a perfect fit, ûi = 0 for 
all observations.
If R2 = 0, or close to zero, then we have a 
poor fit: very little variation in y is explained 
by     .

ŷ

ˆiy
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Goodness-of-Fit
It can be shown that R2 is equal to:

1. The square of the sample correlation 
coefficient between yi and    .

Please show this as an exercise!.
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Goodness-of-Fit
An important fact about R2 is that it never decreases, and it 
usually increases when another independent variable is 
added to a regression.
This algebraic fact follows because, by definition, the sum 
of squared residuals never increases when additional 
regressors are added to the model.
The fact that R2 never decreases when any variable is added 
to a regression makes it a poor tool for deciding whether one 
variable or several variables should be added to a model.
The factor that should determine whether an explanatory 
variable belongs in a model is whether the explanatory 
variable has a nonzero partial effect on y in the population.
For this we need to perform significance statistical tests.
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Goodness-of-Fit
Because we want high explanatory power for our models, 
we look, other things equal, for high R2 in our regressions.
It is worth emphasizing now that a seemingly low R2 does 
not necessarily mean that an OLS regression equation is 
useless.
It is still possible that the OLS estimates are reliable 
estimates of the “ceteris paribus” effects of each regressor
on y.
Generally, a low R2 indicates that it is hard to predict 
individual outcomes on y with much accuracy, which is a 
general feature in the social sciences.
Goodness of fit is not the only feature we look for in a 
regression equation.
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A “Partialling Out” Interpretation
When applying OLS, we don’t need to know 
explicit formulas for the        that solves the 
above system of equations.
The software does the job for you.
Nevertheless, for certain derivations, it is 
useful to know explicit formulas for the        .
In addition, these formulas also shed light on 
the workings of OLS.

ˆ 'sjβ

ˆ 'sjβ
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A “Partialling Out” Interpretation
Consider the case k = 2,

y = β0 + β1x1 + β2x2 + u
then

where     are the OLS residuals from a SLR 
of x1 on x2, this is, residuals from the 
estimated regression                      .
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A “Partialling Out” Interpretation
As an exercise show that the above formula 
is correct.
Hint:
(i) Consider the second normal equation,

(ii) Use the algebraic properties of the MLR 
of y on x1 and x2 and of the SLR of x1 on x2.
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A “Partialling Out” Interpretation
Previous equation implies that regressing y on 
x1 and x2 simultaneously gives same effect of 
x1 on y as regressing y on residuals from a 
previous regression of x1 on x2.
This means that only the part of x1 that is 
uncorrelated with x2 is being related to y, so 
we’re estimating the effect of x1 on y after x2
has been “partialled out”.
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A “Partialling Out” Interpretation
In the general model with k regressors,     can 
still be written as in the previous equation, 
but residuals     come from the regression of 
x1 on x2,x3,…,xk.
See Appendix 3A.2 for a general proof.
Thus,      measures the effect of x1 on y after 
we have discounted the (linear) effect of 
x2,x3,…,xk, so these variables have been 
netted out.

1β̂

1̂r

1β̂
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A “Partialling Out” Interpretation
Note that the above argument also implies 
that MLR coefficients can always be 
estimated in two steps:

1. Regress one independent variables on the 
others plus a constant and take the residuals.

2. Regress y on these residuals.
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Simple versus Multiple Regression 
Estimates (k = 2)

If we compare the OLS estimates in the 
SLR, say     , and in the MLR, say     .
Generally,           unless:

1. , this is, the partial effect of x2 on y is 
zero, or

2. x1 and x2 are uncorrelated,             .

1β 1β̂

1 1
ˆβ ≠ β

2
ˆ 0β =

1 2, 0x xr =
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Regression Through the Origin
Regression through the origin constraints the 
estimated intercept to be zero.
If β0 ≠ 0, then the slope estimates will be 
biased.
Another problem is that if R2 is defined as
1 – SSR/SST then R2 can be negative.
Advise: always include an intercept in your 
regressions.
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Statistical Properties of OLS
We defined de population model
y = β0 + β1x1 + β2x2 + . . . + βkxk + u, and we 
claimed that the key assumption for the MLR 
analysis to be useful is that E(u|x1,...,xk) = 0.
We now return to the population model and 
study the statistical properties of OLS 
estimators,     , considered as estimators of the 
population parameters, βj.

ˆ
jβ
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Assumptions

MLR.1: LINEAR IN PARAMETERS

The population model is linear in parameters 
and given by

y = β0 + β1x1 + β2x2 + . . . +βkxk + u



Francisco J. Goerlich Introductory Econometrics 44

Assumptions

MLR.2: RANDOM SAMPLING

We have a random sample from of size n, 
{(yi,xij): i = 1,2,3,…,n; j = 1,2,…,k}, from 
the population model.
Thus we can write the population model in 
terms of the sample,

yi = β0 + β1xi1 + β2xi2 + . . . +βkxik + ui

i = 1,2,3,…,n
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Assumptions

MLR.3: ZERO CONDITIONAL MEAN

E(u|x1,...,xk) = 0

For a random sample, this assumption implies 
that

E(ui|xi1,...,xik) = 0 ,   i = 1,2,3,…,n

NOTE: Derivations will be conditional on the sample values, x’s.
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Assumption MLR.3

Assumption MLR.3 can fail if:
1. An important factor that is correlated with 

any x1,x2,...,xk is omitted from the estimated 
equation (MLR.3 always fail in this case).

2. The functional relationship between y and 
the explanatory variables, x’s, is 
misspecified.
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Assumption MLR.3: Notation

When MLR.3 holds, we often say that we 
have exogenous explanatory variables.
If xj is correlated with u for any reason, then 
xj is said to be an endogenous explanatory 
variable.

We shall denote x = (x1,x2,...,xk).
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Assumptions

MLR.4: NO PERFECT COLLINEARITY

In the sample, and therefore in the population, 
none of the independent variables is constant, 
and there are no exact linear relationships 
among the independent variables.



Francisco J. Goerlich Introductory Econometrics 49

Assumption MLR.4
Assumption MLR.4 concerns only the independent 
variables.
If an independent variable is an exact linear 
combination of the other independent variables, 
then we say the model suffers from perfect 
collinearity, and it cannot be estimated by OLS.
Note that Assumption MLR.4 does allow the 
independent variables to be correlated; they just 
cannot be perfectly correlated.
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Assumption MLR.4
Assumption MLR.4 can fail if we are not careful in 
specifying our model, i.e. if we introduce an 
accounting relationship between explanatory 
variables.
Assumption MLR.4 also fails if the sample size, n, 
is too small in relation to the number of parameters 
being estimated. In particular, MLR.4 fails if
n < k + 1.
Intuitively, this makes sense: to estimate k + 1 
parameters, we need at least k + 1 observations.
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Assumption MLR.4

If the model is carefully specified and
n ≥ k + 1, Assumption MLR.4 can fail in 
rare cases only due to bad luck in collecting 
the sample.

Under MLR.1 through MLR.4 OLS 
estimators are unbiased.
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Unbiasedness of OLS
THEOREM 3.1 UNBIASEDNESS OF OLS

Under assumptions MLR.1 to MLR.4

PROOF:

Appendix 3A.3

ˆ( ) 0,1,2,...,j jE j kβ = β =
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Unbiasedness of OLS
Remember that when we say that OLS is 
unbiased under Assumptions MLR.1 
through MLR.4, we mean that the procedure
by which the OLS estimates are obtained is 
unbiased when we view the procedure as 
being applied across all possible random 
samples.
This property says nothing about a particular 
sample.
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Misspecification
We speak of misspecification when we end 
up estimating a model different from the 
population model.
Why are we going to do such a thing?
Because de population model, at least in 
social science, is always unknown. So there is 
always a chance that the estimated model is 
misspecified.
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Misspecification
There are many types of misspecification, we 
shall consider now only two:

1. Inclusion of an irrelevant variable.
2. Exclusion a relevant variable.

Remember that the statistical properties take 
the population model as benchmark.
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Inclusion of an Irrelevant Variable
One (or more) of the independent variables 
included in the regression model don’t 
belong to the population model, i.e. it has no 
partial effect on y in the population, that is, 
its population coefficient is zero.
Population:

y = β0 + β1x1 + β2x2 + u
In terms of conditional expectations:
E(y|x1,x2,x3) = E(y|x1,x2) = β0 + β1x1 + β2x2
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Inclusion of an Irrelevant Variable
Estimated model:

What are the effects on the OLS estimates?
1. In terms of unbiasedness there is no effect,      are 

all unbiased.
2. The variance, however, will increase with respect 

to the case in which x3 is (correctly) omitted.

This is a general result.

0 1 1 2 2 3 3
ˆ ˆ ˆ ˆŷ x x x= β + β + β + β

ˆ
jβ
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Exclusion of a Relevant Variable
One variable that actually belongs to the 
population model is omitted in the regression 
model.
Population:

y = β0 + β1x1 + β2x2 + u
Estimated model:

0 1 1y x= β + β
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Exclusion of a Relevant Variable
Our primary interest is in the partial effect of 
x1 on y.
In order to get un unbiased estimator of β1,
we should regress y on x1 and x2.
However, due to ignorance or data 
unavailability, we estimate the model by 
excluding x2.
Then the estimator of β1 will be biased.
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Exclusion of a Relevant Variable
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Exclusion of a Relevant Variable
Taking expectations conditional on the 
sample values of x1 and x2

Thus               in general: so     is biased for 
β1.
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Exclusion of a Relevant Variable
The ratio               is just the OLS slope

coefficient from the regression of x2 on x1:

So                       , which implies that the bias 
in     is                       .
This is often called the omitted variable bias.

1 1 2
1

2
1 1

1

( )

( )

n

i i
i

n

i
i

x x x

x x

=

=

−

−

∑

∑

2 0 1 1x̂ x= δ + δ

1 1 2 1( )E β = β + β δ

1β 1 1 2 1( )E β − β = β δ
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Exclusion of a Relevant Variable
There are two cases where     is unbiased:

1. If β2 = 0, so there is no misspecification.
2. If           , so x1 and x2 are uncorrelated in the 

sample.
The size of the bias is determined by the 
sizes of β2 and     .
The sign of the bias depends on the signs of 
both β2 and     .

1 0δ =

1β

1δ

1δ
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Summary of Direction of Bias

Corr(x1,x2) > 0 Corr(x1,x2) < 0

β2 > 0 Positive bias Negative bias

β2 < 0 Negative bias Positive bias
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Exclusion of a Relevant Variable
If               , then we say that     has un 
upward bias.
If               , then we say that      has a 
downward bias.
The phrase biased towards zero refers to 
cases where         is closer to zero than β1.

1β1 1( )E β > β

1 1( )E β < β 1β

1( )E β
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Omitted Variable Bias:
More General Cases

In a general model we must remember that 
correlation between a single explanatory 
variable and the error term generally results 
in all OLS estimators being biased.
Beyond that we cannot determine the 
direction of the bias, except in special cases.
Technically, can only sign the bias for the 
more general case if all of the included x’s are 
uncorrelated
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Variance of the OLS Estimators
Now we know that the sampling 
distribution of our estimator is centered 
around the true parameter.
How spread out this distribution is? This 
will be a measure of uncertainty.
It is much easier to think about this 
variance under an additional assumption.
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Assumptions

MLR.5: HOMOSKEDASTICITY

Var(u|x) = σ2

Assumptions MLR.1-MLR.5 are collectively 
known as the Gauss-Markov assumptions.
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Variance of the OLS Estimators
The homoskedasticity assumption is quite 
distinct from the zero conditional mean 
assumption, E(u|x) = 0. MLR.3 involves the 
expected value of u, while MLR.5 concerns 
the variance of u.
Homoskedasticity plays no role in showing 
that the      are unbiased.
We add MLR.5 because it simplifies the 
variance calculations and because it implies 
that OLS has certain efficiency properties.

ˆ
jβ
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Variance of the OLS Estimators
Var(u|x) = σ2 = E(u2|x) − [E(u|x)]2

E(u|x) = 0, so σ2 = E(u2|x) = E(u2) = Var(u)
Thus σ2 is also the unconditional variance, 
called the error variance.
σ, the square root of the error variance, is 
called the standard deviation of the error.
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Variance of the OLS Estimators
We can say:

E(y|x) = β0 + β1x1 + β2x2 + . . . +βkxk
and   Var(y|x) = σ2.

So, the conditional expectation of y given x is 
linear in x, but the variance of y given x is 
constant.
When Var(u|x) depends on x, the error term 
is said to exhibit heteroskedasticity. Since 
Var(u|x) = Var(y|x), heteroskedasticity is 
present whenever Var(y|x) is a function of x.
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Variance of OLS estimators
THEOREM 3.2 SAMPLING VARIANCES OF

OLS SLOPE ESTIMATORS
Under assumptions MLR.1 to MLR.5

where these are conditional on the sample values 
{x1,…,xn},       is the R-squared from regressing xj
on all other x’s and

( )
2

2
ˆ( ) 1,2,3,...,

SST 1 R
j

j j
Var j kσ

β = =
−

( )2

1

SST
n

j ij j
i

x x
=

= −∑

2R j



Francisco J. Goerlich Introductory Econometrics 73

Variance of OLS estimators
PROOF: Appendix 3A.5
All of the Gauss-Markov assumptions are used in 
obtaining this formula.
The size of               is practically important. A 
larger variance means a less precise estimator, and 
this translates into larger confidence intervals and 
less accurate hypotheses tests.
Theorem 3.2 shows that the variance depends on 
three factors: σ2, SSTj and      .

ˆ( )jVar β

2R j
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Variance of OLS estimators: σ2

The larger the error variance, σ2, the larger the 
variance of the slope estimates.
This is not at all surprising: more “noise” in the 
equation, a larger σ2, makes it more difficult to 
estimate the partial effect of any x’s on y, and this is 
reflected in higher variances for the OLS slope 
estimators.
Since σ2 is a feature of the population, it has 
nothing to do with the sample size.
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Variance of OLS estimators: SSTj
The larger the total variation in xj is, the smaller is 

.
Everything else being equal, for estimating βj we 
prefer to have as much sample variation in xj as 
possible.
This is the component of the variance that 
systematically depends on the sample size.
So ↑n ⇒ ↓ .
SSTj = 0 is not allowed by Assumption MLR.4.

ˆ( )jVar β

ˆ( )jVar β
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Variance of OLS estimators:
is the proportion of the total variation in xj that 

can be explained by the other independent variables 
appearing in the equation.
For a given σ2 and SSTj, the smallest               is 
obtained when           , which happens if, and only if, 
xj has zero sample correlation with every other
independent variable.
The case            is ruled out by Assumption MLR.4, 
since            means that, in the sample, xj is an exact 
linear combination of the other x’s in the regression.

2R j
2R j

ˆ( )jVar β
2R 0j =

2R 1j =
2R 1j =
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Variance of OLS estimators:
A more relevant case is when        is “close” to 1.
As              ⇒
High, but not perfect, correlation between two or 
more independent variables is called 
multicollinearity.
The case where       is “close” to one is not a 
violation of Assumption MLR.4.
Since multicollinearity violates none of our 
assumptions, the “problem” of multicollinearity is 
not really well-defined.

2R j
2R j

ˆ( )jVar β → ∞2R 1j →

2R j
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Variance of OLS estimators:
We say that multicollinearity arises for estimating βj
when       is “close” to one, but there is no absolute 
number that we can cite to conclude that 
multicollinearity is really a problem for the precision 
of the estimates.
Although the problem of multicollinearity cannot be 
clearly defined, it is true, that for estimating βj, it is 
better to have less correlation between xj and the 
other independent variables.
The effect of             is the same as SSTj → 0. 

2R j

2R j

2R 1j →
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Misspecified Models
Consider de population model (k = 2)

y = β0 + β1x1 + β2x2 + u
Consider two estimators of β1:

1. From the regression of y on x1 and x2

2. From the regression of y on x1 only
0 1 1 2 2

ˆ ˆ ˆŷ x x= β + β + β

0 1 1y x= β + β
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Misspecified Models
From the previous results:

and
( )

2

1 2
1 1

ˆ( )
SST 1 R

Var σ
β =

−

2

1
1

( )
SST

Var σ
β =
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Misspecified Models
Assuming x1 and x2 are not uncorrelated, we 
can draw the following conclusions:

1. When β2 = 0,       and      are both unbiased, 
and                               .

2. When β2 ≠ 0,      is biased,      is unbiased, 
and                                .

1β̂11β
11 11

ˆ( ) ( )Var Varβ < β

11β 1β̂
11 11

ˆ( ) ( )Var Varβ < β
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Misspecified Models
Including irrelevant variables (β2 = 0) 
increases the variance of the estimators, but 
they are unbiased.
Excluding relevant variables (β2 ≠ 0) causes 
the variance to decrease (assuming we 
condition on x1 and x2), but the estimator is 
biased. The variance is not centered at the 
population parameter we are interested in.



Francisco J. Goerlich Introductory Econometrics 83

Estimating the Error Variance
We don’t know what the error variance, σ2, 
is, and we cannot estimate it from the errors, 
ui, because we don’t observe the errors.
σ2 = E(u2), so an unbiased “estimator” would 
be               .
Unfortunately, this is not a true estimator, 
because we don’t observe the errors ui. But, 
we do have estimates of the ui, namely the 
OLS residuals ûi.

1 2
1

n
i in u−
=Σ
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Estimating the Error Variance
The relation between errors and residuals is 
given by

Hence ûi is not the same as ui, although the 
difference between them does have an 
expected value of zero.

( ) ( )0 0
1

ˆ ˆˆ ˆ
k

i i i i j j ij
j

u y y u x
=

= − = − β − β − β − β∑
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Estimating the Error Variance
If we replace the errors with the OLS 
residuals, we have
This is a true estimator, because it gives a 
computable rule for any sample of the data, x
and y.
However, this estimator is biased, essentially 
because it does not account for the k + 1 
restrictions that must be satisfied by the OLS 
residuals,

1 2
1 ˆ SSRn

i in u n−
=Σ =

1 1
1 1ˆ ˆ0 and 0n n

i i i ij in u n x u j− −
= =Σ = Σ = ∀
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Estimating the Error Variance
One way to view these restrictions is this: If 
we know n – (k + 1) of the residuals, we can 
get the other k + 1 residuals by using the 
restrictions implied by the moment 
conditions.
Thus, there are only n – (k + 1) degrees of 
freedom (df ) in the OLS residuals, as 
opposed to n degrees of freedom in the errors.
df: observations – parameters estimated
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Estimating the Error Variance
The unbiased estimator of σ2 that we will use 
makes a degrees of freedom adjustment:

2
12 ˆ SSRˆ

1 1

n
i iu

n k n k
=Σ

σ = =
− − − −

THEOREM 2.3 UNBIASED ESTIMATOR OF σ2

Under assumptions MLR.1 to MLR.5
2 2ˆ( )E σ = σ



Francisco J. Goerlich Introductory Econometrics 88

Estimating the Error Variance
If      is plugged into the variance formulas we 
then have unbiased estimators of             .
The natural estimator of σ is               and is 
called the standard error of the regression.

Since                                   ,

its natural estimator is

ˆ( )jVar β

2σ̂

2ˆ ˆσ = σ

( )
1

2 2

ˆ( )
SST 1 R

j

j j

sd σ
β =

⎡ ⎤−⎣ ⎦

( ) ( )2 2

1

ˆˆ( )
1 R

j
n

ij j j
i

se
x x

=

σ
β =

− −∑
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Estimating the Error Variance
Note that           , the standard error of     , is 
view as a random variable when we think of 
running OLS over different samples; this is 
because      varies with different samples.

The standard error of any estimate gives us an 
idea of how precise the estimator is.

ˆ( )jse β

σ̂

ˆ
jβ
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Efficiency of OLS:
Gauss-Markov Theorem

THEOREM 3.2 GAUSS-MARKOV THEOREM

Under assumptions MLR.1 through MLR.5 
OLS are the Best Linear Unbiased 
Estimators (BLUE) of the population 
parameters.

PROOF: Appendix 3A.6
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Gauss-Markov Theorem
What is the meaning of the Gauss-Markov Theorem?
If we restrict the set of eligible estimators to the 
estimators that are:

1. Linear, so
2. Unbiased, so the weights, wj, satisfy some 

restrictions.
Then, OLS is “best”.
Where “best” is defined as the smallest variance, so

1
n

j i ij ib w y== Σ

ˆ( ) ( ) 0,1,2,...,j jVar Var b j kβ ≤ =
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Gauss-Markov Theorem
Thus, if MLR.1 through MLR.5 holds then 
we use OLS.
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Appendix: Algebra for k = 2
The system we have to solve is:

( )

( )

( )

0 1 1 2 2
1

1 0 1 1 2 2
1

2 0 1 1 2 2
1

ˆ ˆ ˆ 0

ˆ ˆ ˆ 0

ˆ ˆ ˆ 0

n

i i i
i

n

i i i i
i

n

i i i i
i

y x x

x y x x

x y x x

=

=

=

− β − β − β =

− β − β − β =

− β − β − β =

∑

∑

∑
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Appendix: Algebra for k = 2
From the first equation:

and substituting in the other two:

0 1 1 2 2
ˆ ˆ ˆy x xβ = − β − β

( )

( )

1 1 1 1 2 2 2
1

2 1 1 1 2 2 2
1

ˆ ˆ( ) ( ) 0

ˆ ˆ( ) ( ) 0

n

i i i i
i

n

i i i i
i

x y y x x x x

x y y x x x x

=

=

− − β − − β − =

− − β − − β − =

∑

∑
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Appendix: Algebra for k = 2
Alternatively:

1 1 1 1 2 1 2 2 1
1 1 1

1 2 1 1 2 2 2 2 2
1 1 1

ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

n n n

i i i i i i
i i i

n n n

i i i i i i
i i i

x x x x x x x y y

x x x x x x x y y

= = =

= = =

β − + β − = −

β − + β − = −

∑ ∑ ∑

∑ ∑ ∑

2
1 1 1 2 1 2 2 1

1 1 1

2
1 2 1 1 2 2 2 2

1 1 1

ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

n n n

i i i i i
i i i

n n n

i i i i i
i i i

x x x x x x y y

x x x x x x y y

= = =

= = =

β − + β − = −

β − + β − = −

∑ ∑ ∑

∑ ∑ ∑
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Appendix: Algebra for k = 2
Solving for

and substituting into the other equation 

2β̂
2 1 2 1 1

1 1
2

2
2 2

1

ˆ( ) ( )
ˆ

( )

n n

i i i i
i i

n

i
i

x y y x x x

x x

= =

=

− − β −
β =

−

∑ ∑

∑

2 1 2 1 1
2 1 1

1 1 1 1 2 2 1
21 1 1

2 2
1

ˆ( ) ( )
( ) ( ) (

( )

n n

i i i in n n
i i

i i i i in
i i i

i
i

x y y x x x
ˆ )x x x x x x y

x x

= =

= = =

=

− − β −
+ − = −

−

∑ ∑
∑ ∑ ∑

∑
yβ −
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Appendix: Algebra for k = 2
Solving for

Which eventually lead us to 

1β̂
2

2 2
1 1 1 2 2 1 1 1 2 2

1 1 1

2
1 2 2 2 1 2 2

1 1 1 1

ˆ ˆ( ) ( ) ( )( )

( ) ( ) ( ) ( )

n n n

i i i i
i i i

n n n n

i i i i i i i
i i i i

x x x x x x x x

x y y x x x y y x x x
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= = = =

⎛ ⎞⎛ ⎞ ⎡ ⎤
β − − − β − − =⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
= − − − − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑ ∑

∑ ∑ ∑ ∑
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1 2 2 2 1 2 2

1 1 1 1
1 2

2 2
1 1 2 2 1 1 2 2

1 1 1

( ) ( ) ( ) ( )
ˆ

( ) ( ) ( )( )

n n n n

i i i i i i i
i i i i
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i i i i
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⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
− − − − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠β =
⎛ ⎞⎛ ⎞ ⎡ ⎤

− − − − −⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦

∑ ∑ ∑ ∑

∑ ∑ ∑



Francisco J. Goerlich Introductory Econometrics 98

Appendix: Algebra for k = 2
This shows that for the general case, when 
k ≥ 2, ordinary algebra is inadequate. In 
this case it is necessary to switch to matrix 
algebra (See Appendix E).
Defining

we can write     as

( )( )

( ) ( )
1 2

2

1 1 2 2
2 1

,
2 2

1 1 2 2
1 1

n

i i
i

x x n n

i i
i i

x x x x
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x x x x

=

= =

⎛ ⎞
− −⎜ ⎟

⎝ ⎠=
⎛ ⎞⎛ ⎞

− −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑

∑ ∑

1β̂
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Appendix: Algebra for k = 2
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1 2

1 2

2
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Appendix: Algebra for k = 2

1. If                then

so the OLS slope estimates in the MLR of y
on x1 and x2 and the SLR of y on x1 are the 
same.
Remember that         is a measure of 
multicolinearity in this model.

1 2
2

, 0x xr =
1 1

1
1 1

2
1 1

1

( )( )
ˆ
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i i
i
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i

x x y y

x x

=

=

− −
β = = β

−

∑

∑

1 2
2

,x xr
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Appendix: Algebra for k = 2

2. If                then

so, when the partial effect of x2 on y is zero,
, then the MLR of y on x1 and x2 and 

the SLR of y on x1 are the same.
We encountered these two cases before.

2
ˆ 0β =

1 1
1

1 1
2

1 1
1

( )( )
ˆ

( )

n

i i
i

n

i
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x x y y

x x

=

=

− −
β = = β

−

∑

∑

2
ˆ 0β =
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Appendix: Algebra for k = 2
3. Moreover we can write

so letting                               ,

the OLS slope estimate in the SLR of y on x1,

( )( )

( )

( )( )

( )

1 1 1 1 2 2
1 1

1 2
2 2

1 1 1 1
1 1
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n n

i i i i
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i i
i i

x x y y x x x x

x x x x
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= =
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∑ ∑
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1

n

i i
i
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i
i

x x y y

x x
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∑
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Appendix: Algebra for k = 2
we see that                     , where

is just the OLS slope 

coefficient from the SLR of x2 on x1.
Hence                    , which shows the relation 
between the SLR and the MLR coefficient 
estimates and it is another way to study the 
omitted variable bias.

1 1 2 1
ˆ ˆβ = β − β δ
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1 1 2 2
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n

i i
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i
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x x x x

x x
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−
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1 1 2 1
ˆ ˆβ = β + β δ
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Appendix: 2 2
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Appendix: 2 2
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Nothing in this derivation depends on k.
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Consider the normal equation for x1

( )1 0 1 1 2 2
1

ˆ

ˆ ˆ ˆ 0

i

n

i i i i
i

u

x y x x
=

− β − β − β =∑

Regressing x1 on x2 we can write

1 1
1 1 1 0 2 2 1 1 1 1

1 2 1

ˆ 0
ˆ ˆˆ ˆ ˆ ˆ ˆ 0

ˆ 0

n
i i n

i i in
i i i

r
x x r x r x r

x r
=

=

=

⎧Σ =⎪= + = γ + γ + ⇒ ⇒ Σ =⎨
Σ =⎪⎩
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1 0 2 2 0 2 2
1 1 1 1
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ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆsince  0

by the algebraic properties of the OLS.
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x u x r u x u r u r u

x u x u u x u
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Solving                                 we get the formula for  .2
1 1 1

1 1

ˆˆ ˆ 0
n n

i i i
i i

r y r
= =

− β =∑ ∑ 1β̂

Note that the argument can be generalized for general k.
In this case     are the residuals from the regression of x1
on x2,x3,…,xk.

1̂r
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Of course we can proof this directly from the formula 
for     we got before.
From the theory of OLS we can write          as 

1β̂
2
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ˆ
n

i
i

r
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∑

( )1 2
2 2 2
1 1 1 ,

1 1

ˆ ( ) 1
n n

i i x x
i i

r x x r
= =

= − −∑ ∑

Given the Sum of Squares Decomposition and since the 
R-squared in the regression of x1 on x2 is just        .1 2

2
,x xr



Francisco J. Goerlich Introductory Econometrics 112

Appendix: 
1

1
1

2
1

1

ˆ
ˆ

ˆ

n

i i
i

n

i
i

r y

r

=

=

β =
∑

∑
Substituting this into the formula for      we have1β̂
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So eventually we get
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