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Multiple Regression Analysis

y = β0 + β1x1 + β2x2 + . . . + βkxk + u

4. Further Issues
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Data Scaling and OLS Statistics
We now return to the issue of changes in scale and 
origin we met before in Chapter 2 and examine the 
effects of rescaling the dependent or independent 
variables on se, t statistics, F statistics, and CI.
As expected, when variables are rescaled, the 
coefficients, se, CI, t and F statistics change in ways 
that preserve all measured effects and testing 
outcomes.
Hence, our conclusions are not affected by the units 
of measurement in the variables involved.
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Data Scaling and OLS Statistics
Consider the following estimated equation:

and now consider what happens to our OLS 
statistics as we change the scale and origin 
of y and of x1.
We can work out these effects by simply 
manipulating the above equation.

0 1 1 2 2
ˆ ˆ ˆŷ x x= β +β +β
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Data Scaling and OLS Statistics
1. Changes in the scale of y: c1.y

Coefficients are multiplied by c1.
Standard errors are multiplied by c1.
Statistical significance is not affected.
CI change by the same factor, c1.

1 1 0 1 1 1 1 2 2
ˆ ˆ ˆˆ. ( . ) ( . ) ( . )c y c c x c x= β + β + β
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Data Scaling and OLS Statistics
Residuals are multiplied by c1.
SSR are multiplied by    .
Standard Error of the Regression,               ,
is multiplied by c1.
R2 is not affected, so the overall 
significance of the regression is not 
affected.

2
1c

ˆSER = σ
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Data Scaling and OLS Statistics
2. Changes in the origin of y: c0 + y

Only the intercept, β0, is affected. 
The slope coefficients, measuring partial 
effects, are not affected.
Residuals are not affected.
R2 is not affected.

0 0 0 1 1 2 2
ˆ ˆ ˆˆ ( )c y c x x+ = +β +β +β
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Data Scaling and OLS Statistics
3. Changes in the scale of x1: d1.x1

The coefficient associated to x1, β1, is 
divided by d1.
All other coefficients are not affected.
The standard error of β1 is divided by d1.
Statistical significance is not affected.
The CI for β1 change by the factor, 1/d1.

0 1 1 1 1 2 2
ˆ ˆ ˆˆ ( / )( . )y d d x x= β + β +β
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Data Scaling and OLS Statistics
Residuals are not affected.
Hence, neither SSR nor the SER are 
affected.
R2 is not affected, so the overall 
significance of the regression is not 
affected.
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Data Scaling and OLS Statistics
4. Changes in the origin of x1: d0 + x1

Only the intercept, β0, is affected. 
The slope coefficients, measuring partial 
effects, are not affected.
Residuals are not affected.
R2 is not affected.

0 1 0 1 1 0 2 2
ˆ ˆ ˆ ˆˆ ( ) ( )y d x d x= β −β +β + +β
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Data Scaling and OLS Statistics
Conclusion: Changes in scale and/or origin 
does not affect to any substantial part of the 
regression.
In particular, statistical significance and 
interpretation of coefficients is not affected 
by data scaling.
Note that to make our equation invariant to 
the origin of the variables we need an 
intercept in our equation.
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Data Scaling and OLS Statistics
This analysis shows clearly that if variables 
appear in logarithmic form, changing the units 
of measurement does not affect the slope 
coefficients.
This follows from the fact that

so only the intercept is affected in these cases.

1 1 1

1 1 1

log( . ) log( ) log( ) 0
log( . ) log( ) log( ) 0j j

c y c y c
d x d x d

= + >
= + >
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Beta Coefficients
Sometimes in econometric applications, a 
key variable is measured on a scale that is 
difficult to interpret, for example, test 
scores, synthetic indexes,…
In such cases, we can be interested in see 
what happens to y when the corresponding 
independent variable varies by one 
standard deviation.
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Beta Coefficients
Sometimes, it is useful to obtain regression 
results when all variables involved, y as well 
as the x´s, have been standardized.
To standardize a variable subtracts its mean 
and divide by its standard deviation.
Why is standardization useful?
Lets see what this transformation implies for 
the coefficient estimates.
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Beta Coefficients

Averaging this equation and subtracting

Simple algebra gives us the estimated equation 
in standardized form

0 1 1 2 2
ˆ ˆ ˆ ˆ ˆi i i k ik iy x x x u= β +β +β + +β +…

1 1 1 2 2 2
ˆ ˆ ˆ ˆ( ) ( ) ( )i i i k ik k iy y x x x x x x u− = β − +β − + +β − +…

1 1 1 2 2 2
1 2

1 2

ˆ ˆ ˆ ˆ( ) ( ) ( )ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

i i i k ik k i
k

y y y y k y

y y x x x x x x u⎛ ⎞ ⎛ ⎞ ⎛ ⎞− σ − σ − σ −⎡ ⎤⎡ ⎤ ⎡ ⎤= β + β + + β +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎢ ⎥σ σ σ σ σ σ σ σ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠ ⎝ ⎠
…
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Beta Coefficients
Which we can rewrite as

where z denotes an standardized variable, the z-
score,    denotes the error and the new 
coefficients are

These      are traditionally called standardized 
coefficients or beta coefficients.

1 1 2 2
ˆ ˆ ˆ ˆy k kz b z b z b z e= + + + +…

ê

ˆˆ ˆ for 1,2, ,
ˆ

j
j j

y
b j kσ
=β =

σ
…

ˆ
jb
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Beta Coefficients
The meaning of these coefficients is as follows: If xj
increases by one standard deviation, then    changes 
by      standard deviations, holding all other 
variables constant.
Thus, we are measuring effects not in terms of the 
original units of y and xj, but in standard deviation 
units.
Because the equation in terms of the z-score makes 
the scale of the regressors irrelevant, this equation 
puts the explanatory variables on equal footing.

ŷ
ˆ

jb
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Beta Coefficients
In a standard OLS equation, it is not possible to 
simply look at the size of different coefficients and 
conclude that the explanatory variable with the 
largest coefficient is “the most important”.
We just have seen that the magnitudes of 
coefficients can be changed at will by changing the 
scale of xj.
But, when each xj has been standardized, comparing 
magnitudes of the resulting beta coefficients is 
more compelling.
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Functional Form
OLS can be used for modeling relationships 
that are not strictly linear in x and y by using 
nonlinear functions of x and y, if the model 
is still linear in the parameters.
We consider some possibilities that often 
appear in applied work:

1. log´s of x and y.
2. quadratic forms of x.
3. Interactions of x variables.
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Proportions and Percentages
Remember that:

1. Proportional change:

2. Percentage change:

3. Elasticity:

1 0

0 0

x x x
x x
− ∆

=

0
100. %x x

x
∆

= ∆

0

0

%.
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y x y
x y x

∆ ∆
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Proportions and Percentages
4. Changes in logarithms:

Hence,

1 0
1 0

0 0
log( ) log( ) log( ) x x xx x x

x x
− ∆

∆ = − ≈ =

100. log( ) %.x x∆ ≈ ∆
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A Linear Model for log(y)
Consider the model

log(y) = β0 + β1x + u
What is the meaning of β1 in this model?
If ∆u = 0, then x has a linear effect on log(y):

∆log(y) = β1∆x
or,

%∆y = (100.β1).∆x
i.e. 100.β1 is the percentage change in y by 
unit of x.
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A Constant Elasticity Model
Consider the model

log(y) = β0 + β1log(x) + u
What is the meaning of β1 in this model?
If ∆u = 0, then log(x) has a linear effect on 
log(y):
∆log(y) = β1∆log(x)   ⇔ %∆y = β1.%∆x

i.e. β1 is the elasticity of y with respect to x.
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Functional Forms Involving logs

Model
Dependent
Variable

Independent
Variable

Interpretation
of β1

level-level y x ∆y = β1.∆x

level-log y log(x) ∆y = (β1/100).%∆x

log-level log(y) x %∆y = (100.β1).∆x

log-log log(y) log(x) %∆y = β1.%∆x
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Functional Form
Important: While the mechanics of the 
linear regression does not depend on how y
and the x´s are defined, the interpretation of 
the coefficients does depend on their 
definitions.
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Why use log models?
Using log´s leads to coefficients with appealing 
interpretations, i.e. elasticity or semi-elasticity.
Models with log´s are invariant to the scale of the 
variables, since they measure proportional changes.
For models with y > 0, using log(y) as the dependent 
variable often satisfy the CLM assumptions more 
closely than models using the level of y.
For models with y > 0, the conditional distribution is 
often heteroskedastic or skewed, while log(y) is 
much less so.
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Why use log models?
Taking log´s usually narrows the range of the 
variable. This makes estimates less sensitive to 
outlying (or extreme) observations on the dependent 
or independent variables.
One limitation of the log is that it can not be used if 
a variables can take zero or negative values.
One drawback to using a dependent variable in log 
form is that it is more difficult to predict the original 
variable. The original model allows us to predict 
log(y), not y.



Francisco J. Goerlich Introductory Econometrics 27

Why use log models?
Also it is not legitimate to compare R2 from 
models where y is the dependent variable in 
one case and log(y) is the dependent variable 
in the other. These measures explained 
variations in different variables.

Important: This is a general rule, the R2

cannot be used to compare models with 
different dependent variable.
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Some Rules of Thumb
What types of variables are often used in log form?
Variables in money terms that must be positive.
Very large variables, such as population.

What types of variables are often used in level 
form?
Variables measured in years.
Variables that are a proportion or percent, i.e. 
inflation, interest rates.
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Quadratic Models
A quadratic model is of the form

y = β0 + β1x + β2x2 + u

Quadratic functions are also used quite 
often in applied economics to capture 
decreasing or increasing marginal effects.
Important: β1 does not measure the change 
in y with respect to x; it makes no sense to 
hold x2 fixed while changing x.
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Quadratic Models
If ∆u = 0 then,

the marginal effect of x on y depends linearly 
on the value of x.
The estimated slope is β1 + 2β2x.
In a particular application this marginal effect 
should be evaluated at interesting values of x.

1 2 1 2( 2 ). 2yy x x x
x

∆
∆ ≈ β + β ∆ ⇒ ≈β + β

∆
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More on Quadratic Models
Suppose that β1 > 0 and β2 < 0.
Then y is increasing in x at first, but will 
eventually turn around and be decreasing in 
x.
The turning point will be at

1*

22
x β
=

β
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More on Quadratic Models
Suppose that β1 < 0 and β2 > 0.
Then y is decreasing in x at first, but will 
eventually turn around and be increasing in 
x.
The turning point will be at

which is the same as before.

1*

22
x β
=

β
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Interaction Terms
Sometimes, it is natural for the partial effect, 
elasticity or semi-elasticity of the dependent 
variable with respect to an explanatory 
variable to depend on the magnitude of yet 
another explanatory variable.
These effects can be modeled through 
interaction terms, xi xj.



Francisco J. Goerlich Introductory Econometrics 34

Interaction Terms
Consider the model

y = β0 + β1x1 + β2x2 + β3x1x2 + u
In this case β1 is not the partial effect of x1
on y, because there is an interaction term, 
x1x2.
If ∆u = 0 then,

1 3 2 1 1 3 2
1

( ). yy x x x
x
∆

∆ = β +β ∆ ⇒ =β +β
∆
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Interaction Terms
The partial effect of x1 on y depends linearly 
on x2.
In summarizing the effect of x1 on y, we 
must evaluate the above expression at 
interesting and representative values of x2, 
for examples the sample mean of x2.
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Functional Form
This shows clearly that the partial effects of 
xj on y are constant only if the model is 
linear in variables. In all other cases the 
interpretation of the coefficients does 
depend on the definitions of the variables.
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R-Squared
We found before the R2 as a goodness of fit
measure.
R2 is simply an estimate of how much variation in y
is explained by the x´s, and even it is intuitively 
obvious that a higher R2 is preferable to a lower 
one, nothing about the classical model assumptions 
requires that R2 be above any particular value.
A small R2 does imply that the error variance is 
large relative to the variance of y, which means that 
the βj are not precisely estimated.



Francisco J. Goerlich Introductory Econometrics 38

R-Squared
But remember, that a large error variance can be 
offset by a large sample size, so if n is large enough, 
we may be able to precisely estimate the partial 
effects even though we have not controlled for 
many unobserved factors.
Also that the relative change in the R2, when 
variables are added to an equation, is very useful: 
the F statistic for testing the joint significance of the 
added variables crucially depends on the difference 
in the R2 between the unrestricted and the restricted 
models.
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Adjusted R-Squared
Recall that the R2 will always increase as more 
variables are added to a given model.
This can lead to the false impression that models 
with more explanatory variables are always 
preferred, but this is completely false. If we add 
variables to a given model, R2 will never decrease, 
even if these variables are not significant.
To avoid this algebraic fact we can “adjust” the R2

in a way that takes into account the number of 
variables included in a given the model.
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Adjusted R-Squared
To see how the usual R2 might be adjusted, it 
is usefully written as

This expression reveals what R2 is actually 
estimating.
The population R2 is defined as 

2 SSR1
SST

nR
n

= −

2

21 u

y

σ
−
σ
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Adjusted R-Squared
This is what R2 is supposed to be estimating.
However, we have better estimates for these 
variances that the ones used in the R2. So lets 
use unbiased estimates for these variances

This is the adjusted R2.

( )2 2SSR ( 1) 11 1 1
SST ( 1) 1

n k nR R
n n k
− − −

= − = − −
− − −
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Adjusted R-Squared
The primary attractiveness of       is that it 
imposes a penalty for adding additional 
independent variables to a model.
If an independent variable is added to a 
model then SSR falls, but so does the df in 
the regression, n − k − 1. So      can go up or 
down when a new independent variable is 
added to a regression.

2R

2R
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Adjusted R-Squared
An interesting algebraic fact is that if we add 
a new independent variable to a regression 
equation,      increases if, an only if, the t
statistic on the new variable is greater than 
one in absolute value.
Thus we see immediately that using      to 
decide whether a certain independent 
variable belongs in a model gives us a 
different answer than standard t testing.

2R

2R
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Goodness of Fit
It is important not to focus too much on R2 or     ,
and lose insights from economic theory and 
common sense.
Goodness of fit by itself is not an objective.
If economic theory clearly predicts a variable 
belongs to a model, generally leave it in.
Don’t try to include a variable that prohibits a 
sensible interpretation of the variables of interest. 
Remember the ceteris paribus interpretation of 
multiple regression.

2R
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Goodness of Fit
Provided the above conditions are fulfilled, 
you can use the R2 to measure the goodness 
of fit of models with the same number of 
independent variables and the same y:

(1) y = β0 + β1x1 + β2x2 + u
(2) y = β0 + β1x1 + β3x3 + u

These are nonnested models, because 
neither equation is a special case of the other.
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Goodness of Fit
You can use the      to measure the goodness 
of fit of models with different number of 
independent variables and the same y:

(1) y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + u
(2) y = β0 + β1x1 + β3x3 + β4log(x4) + u

Explanatory variables can appear with 
different functional form, but not y.

2R
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Goodness of Fit
You cannot use neither the R2 nor      to 
measure the goodness of fit of models with 
different functional forms for the dependent 
variable, y:

(1) y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + u
(2) log(y) = β0 + β1x1 + β4log(x4) + u

The reason is simple: the variation to be 
explained, SST, is different for both models.

2R
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Prediction
Suppose we have estimated the equation

When we plug in particular values of the x´s, we 
obtain a prediction for y, which is an estimate of the 
expected value of y given the particular values for 
the x´s.
Let c1, c2,…, ck denote the particular values for 
each of the k independent variables; these may or 
may no correspond to an actual data point in our 
sample.

0 1 1 2 2
ˆ ˆ ˆ ˆˆ k ky x x x= β +β +β + +β…
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Prediction
The parameter we would like to estimate is

The natural estimator of θ0 is

This is easy to compute once the model has been 
estimated.
Predictions are certainly useful, but they are 
subject to sampling variation, so what about its 
uncertainty?

0 1 1 2 2

0 1 1 2 2

E( | , ,..., )k k

k k

y x c x c x c
c c c

θ = = = =
= β +β +β + +β…

0 0 1 1 2 2
ˆ ˆ ˆ ˆ ˆ

k kc c cθ = β + β + β + +β…
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Prediction
It is natural to construct a confidence interval for θ0
which is centered at     .
To obtain a CI for θ0, we need a standard error for        
Then, under MLR6 we can construct a 95% CI as         

, where t.025 is the 97.5th percentile in 
the tn−k−1 distribution.
Otherwise, with a large df, we can construct a 95% 
CI using the rule of thumb                       , since for 
large n−k−1 then t.025 ≈ 1.96

0 .025 0
ˆ ˆ. ( )t seθ ± θ

0θ̂

0θ̂

0 0
ˆ ˆ2. ( )seθ ± θ
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Prediction
How do we obtain the se of     ?
If the computer software does not do the job for you, 
note that all you need is a se of a linear combination 
of the OLS estimators, just as in hypothesis testing, 
so the same trick we used there works here.
Write β0 = θ0 − β1c1 − β2c2 − . . . − βkck, and plug 
this into the equation

y = β0 + β1x1 + β2x2 + . . . + βkxk + u
to obtain

y = θ0 + β1(x1 − c1) + β2(x2 − c2) + . . . + βk(xk − ck) + u

0θ̂
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Prediction
In other words, we subtract the value cj from each 
observation on xj, and then we run the regression of
yi on (xi1 − c1), (xi2 − c2), ... , (xik − ck),  i = 1,…,n
The predicted value, and more importantly, its se, 
are obtained from the intercept, or constant, in this 
regression.
Note that the se will be smallest when the c´s are 
equal to the mean of the x´s.
This result is not surprising, since intuitively we 
have less uncertainty near the middle of our data.
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Prediction: CI
y

xcx

lower limit of
confidence interval

upper limit of confidence interval

confidence interval
for θ0

This illustrates graphically the confidence interval for predictions in the SLR case.

0θ̂
0 1= +ˆ ˆˆ β βy x
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Prediction
The previous method allows us to put a CI around the 
OLS estimate of E(y|x1,x2,…,x3), for any values of the 
x´s.

In other words, we obtain a CI for the average value of 
y for the subpopulation with a given set of covariates.

But a CI for the average unit in the subpopulation is 
not exactly the same as a CI for a particular unit in 
the subpopulation.

In forming a CI for an unknown outcome on y, we must 
account for another very important source of variation: 
the variance in the unobserved error, which measures 
our ignorance on the unobserved factors that affect y.
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Prediction Interval
Let y0 denote the value for which we would like to 
construct a CI, usually called prediction interval. 
Let                    be the new values of the x´s, which 
we observe, and let u0 be the unobserved error. 
Therefore, we have

As before, our best point prediction of y0 is the 
expected value of y0 given the explanatory variables, 
which we estimate from the OLS regression line

0 0 0
1 2, ,..., kx x x

0 0 0 0 0
0 1 1 2 2 ... k ky x x x u= β + β +β + + β +

0 0 0 0
0 1 1 2 2

ˆ ˆ ˆ ˆˆ ... k ky x x x= β +β +β + +β
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Prediction Interval
The prediction error in using      to predict y0 is

Because OLS estimators are unbiased and E(u0) = 0, 
then                 . So the expected prediction error is 
zero.
In finding the variance of     , note that u0 is 
uncorrelated with      (why?).
Therefore, the variance of the prediction error
(conditional on the x´s) is the sum of the variances

0 0 0 0 0 0 0 0
0 1 1 2 2ˆ ˆ ˆ( ... )= − = β +β +β + +β + −k ke y y x x x u y

0ŷ

0ˆ( ) 0=E e

0ê
0ŷ

0 0 0 0 2ˆ ˆ ˆ( ) ( ) ( ) ( )= + = + σVar e Var y Var u Var y
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Prediction Interval
There are two sources of variation in    .

1. The sampling error in    , which arises because we 
have estimated the βj.

2. The ignorance of the unobserved factors that affect 
y, which is reflected in σ2.

Under the CLM assumptions      is also normally 
distributed (conditional on the x´s). And using 
unbiased estimators of               and σ2, we can 
define the se of      as

0ê
0ŷ

0ˆ( )Var y

0ê

{ }
1

2 20 0 2ˆ ˆ ˆ( ) ( )⎡ ⎤= + σ⎣ ⎦se e se y

0ê
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Prediction Interval
Using the same reasoning for the t statistic of the     ,

has a t distribution with n−k−1 df. Therefore,

where t.025 is the 97.5th percentile in the tn−k−1
distribution.
Plugging in                   and rearranging gives a 95% 
prediction interval for y0:                         .

β̂ j
0

0

ˆ
ˆ( )

e
se e

0

.025 .0250

ˆ
Pr .95

ˆ( )
⎡ ⎤
− ≤ ≤ =⎢ ⎥
⎣ ⎦

et t
se e

0 0 0ˆ ˆ= −e y y
0 0

.025ˆ ˆ. ( )±y t se e
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Prediction Interval
Usually the estimate of σ2 is much larger than the 
variance of the prediction.
Thus, this prediction interval will be much wider 
than the simple CI for the prediction.

As before with a large df, we can construct a 95% 
prediction interval using the rule of thumb

, since for large n−k−1 then t.025 ≈ 1.96.0 0ˆ ˆ2. ( )±y se e
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Residual Analysis
Sometimes, it is useful to examine the residuals for 
the individual observations. This process is known 
as residual analysis.
Big residuals, either positive or negative, can be 
informative about special events or characteristics 
of individual observations.
Extreme residuals, greater in absolute value than 3 
standard error of the regression, are called outliers.
Outliers merit some consideration since they can 
influence estimation results.
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Predicting y in a log(y) model
Define logy = log(y), and consider the problem of 
predicting y when the estimated model is

logy = β0 + β1x1 + β2x2 + . . . + βkxk + u
Given OLS estimators we predict logy as

Simple exponentiation,                       , will 
systematically underestimate the expected value of 
y.
Instead, we need to scale this up by an estimate of 
the expected value of exp(u).

0 1 1 2 2
ˆ ˆ ˆ ˆˆ = β +β +β + +β… k klogy x x x

ˆ ˆexp( )y = logy
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Predicting y in a log(y) model
Note that if u~N(0,σ2), then 

Under the CLM assumptions MLR.1 through 
MLR.6, then

This equation shows that, under normality, the 
simple adjustment needed to predict y is

where     is the unbiased estimator of σ2.
Because 

2
0 1 1 2 2( | ) exp( / 2).exp( )x = σ β +β +β + +β… k kE y x x x

( )2
(exp( )) exp 2

σ=E u

2ˆ ˆ ˆexp( / 2).exp( )σy = logy
2σ̂

2 2ˆ ˆ0 exp( / 2) 1σ > ⇒ σ >
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Predicting y in a log(y) model
The above prediction is not unbiased, but it is 
consistent. And in many cases works pretty well.
However, it does rely on the normality of u.
It is useful to have a prediction that does no rely on 
normality. If we just assume that u is independent 
of the x´s, then we have

where α0 is the expected value of exp(u), which 
must be greater than unity.

0 0 1 1 2 2( | ) .exp( )x = α β +β +β + +β… k kE y x x x
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Predicting y in a log(y) model
Given an estimate     , we can predict y as

It turns out that a consistent estimator of      is 
easily obtained:

1. Obtain the fitted values
2. Create 
3. Regress y on     , without an intercept. The 

coefficient on     , the only coefficient there is, is 
the estimate of α0, i.e. E(exp(u)).

4. Once      is obtained, predict y as                            . 

0α̂

0ˆˆ ˆ.exp( )αy = logy
0α̂

ˆ ilogy
ˆ ˆexp( )=i im logy

m̂
m̂

0α̂ 0ˆˆ ˆ.exp( )αy = logy
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Comparing log(y) and y models
As mentioned before, R2 cannot be used to compare 
models with different dependent variables. In 
particular, it cannot be used to compare models with 
y and log(y) as dependent variables.
If the goal is to find a goodness-of-fit measure in the 
log(y) model that can be compared with the R2 from 
a model where y is the dependent variable we can 
use the previous results.
After running the regression of y on      through the 
origin, we obtain the fitted values for this regression,

m̂

0ˆˆ ˆ.i iy = mα
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Comparing log(y) and y models
Then, we find the sample correlation between     and 
the actual yi in the sample.
The square of this can be compared with the R2 we 
get by using y as the dependent variable in a linear 
regression model.

Remember that the R2 in the fitted equation

is just the squared correlation between yi and     . 

ˆiy

ˆiy
0 1 1 2 2

ˆ ˆ ˆ ˆˆ k ky x x x= β +β +β + +β…
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