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Multiple Regression Analysis

y = β0 + β1x1 + β2x2 + … + βkxk + u

5. Dummy Variables
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Dummy Variables
So far, the dependent and independent 
variables in our multiple regression models 
have had a quantitative meaning.
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Quantitative Information
Table 1.3
Minimum Wage, Unemployment, and related data for Puerto Rico

obsno year avgmin avgcov unemp gnp

1 1950 0.20 20.1 15.4 878.7

2 1951 0.21 20.7 16.0 925.0

3 1952 0.23 22.6 14.8 1015.9

. . . . . .

. . . . . .

. . . . . .

37 1986 3.35 58.1 18.9 4281.6

38 1987 3.35 58.2 16.8 4496.7
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Dummy Variables
In empirical work, we must also incorporate 
qualitative factors into regression models.
Qualitative factors often, but not always, 
come in the form of binary information, i.e. a 
person is female or male, is either married or 
not.
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Qualitative Information
Table 1.1

A Cross-Sectional Data Set on Wages and Other Individual Characteristics
obsno wage educ exper female married

1 3.10 11 2 1 0

2 3.24 12 22 1 1

3 3.00 11 2 0 0

4 6.00 8 44 0 1

5 5.30 12 7 0 1

. . . . . .

. . . . . .

. . . . . .
525 11.56 16 5 0 1

526 3.50 14 5 1 0
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Describing Qualitative Information
When qualitative factors come in the form of 
binary information the relevant information 
can be captured by defining a binary 
variable or a zero-one variable.
In econometrics, binary variables are most 
commonly called dummy variables.
In defining a dummy variable, we must 
decide which event is assigned the value one 
and which is assigned the value zero.
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Describing Qualitative Information
Example 1: In a gender case we can define

female = 1 if the person is female,
female = 0 if the person is male.

Of course we can also define:
male = 0 if the person is female,
male = 1 if the person is male.

But note that both variables, female and male, 
convey the same information.



Francisco J. Goerlich Introductory Econometrics 8

Describing Qualitative Information
Example 2: In a marital status case we can 
define

married = 1 if the person is married,
married = 0 if the person is not married.

Using this trick we can incorporate 
qualitative information in our regression 
models.
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Describing Qualitative Information
Table 1.1

A Cross-Sectional Data Set on Wages and Other Individual Characteristics
obsno wage educ exper female married

1 3.10 11 2 1 0

2 3.24 12 22 1 1

3 3.00 11 2 0 0

4 6.00 8 44 0 1

5 5.30 12 7 0 1

. . . . . .

. . . . . .

. . . . . .
525 11.56 16 5 0 1

526 3.50 14 5 1 0
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Describing Qualitative Information
Why do we use the values zero and one to 
describe qualitative information?
In a sense, these values are arbitrary: any two 
different values would do the job.
The real benefit of capturing qualitative 
information using zero-one variables is that it 
leads to regression models where the 
parameters have very natural interpretations.
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Single Dummy Independent Variable
How do we incorporate binary information 
into regression models?
In the simplest case, with only a single 
dummy explanatory variable, we just add it 
as an independent variable in the equation.
Example: Consider de simple model of 
hourly wage determination

wage = β0 + β1educ + u



Francisco J. Goerlich Introductory Econometrics 12

Single Dummy Independent Variable
To measure gender wage discrimination we 
can just simply introduce a dummy variable 
for gender, for example the female variable 
defined above,

wage = β0 + δ0 female + β1educ + u
What is the interpretation of δ0? δ0 is the 
difference in hourly wage between females 
and males, given the same amount of 
education (and the same error term u).
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Single Dummy Independent Variable
Thus, the coefficient δ0 determines whether 
there is discrimination against women: If 
δ0 < 0 then, for the same level of other factors, 
women earn less than men on average.
In terms of expectations, if we assume the 
zero conditional mean assumption 
E(u| female,educ) = 0, then

δ0 = E(wage| female = 1,educ) − E(wage| female = 0,educ)
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Single Dummy Independent Variable
Since  female = 1 corresponds to females and 
female = 0 corresponds to males, we can write 
this more simply as

δ0 = E(wage| female,educ) − E(wage|male,educ)

The key here is that the level of education is 
the same in both expectations; the difference, 
δ0, is due to gender only.
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Single Dummy Independent Variable
Since  female = 1 corresponds to females and 
female = 0 corresponds to males, we can write 
two models, one for females

wage = β0 + δ0 + β1educ + u
and other for males

wage = β0 + β1educ + u
Hence the situation can be depicted 
graphically as an intercept shift between 
males and females.
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Example of δ0 < 0
wage

men: wage = β0 + β1educ

women: wage = ( β0 + δ0 ) + β1educ

slope: β1

δ0

β0

β0 + δ0

educ0



Francisco J. Goerlich Introductory Econometrics 17

Single Dummy Independent Variable
Why we do not also include a dummy 
variable, say male, in the above equation? So 
we have,

wage = β0 + δ0 female + γ0male + β1educ + u
The answer is simple: this would be 
redundant.
In the original equation the intercept for 
males is β0, and the intercept for females is 
β0 + δ0.
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Single Dummy Independent Variable
Since there are just two categories, we only 
need two different intercepts. This means that, 
in addition to β0, we need to use only one
dummy variable; we have chosen to include 
the dummy variables for females.
Using two dummy variables would introduce 
perfect collinearity because female + male = 1, 
which means that male is a perfect linear 
function of female.
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Single Dummy Independent Variable
Including dummy variables for both genders is 
the simplest example of the so-called dummy 
variable trap, which arises when a dummy 
variable for each category is introduced in an 
equation, in addition to the intercept.
In the previous example we have chosen to 
introduce female, which makes males to be the 
base group or benchmark group, that is, the 
group against which comparisons are made.
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Single Dummy Independent Variable
This is why β0 is the intercept for males, and 
δ0 is the difference in intercepts between 
females and males.
What happen if we use male instead of 
female in the wage equation?

wage = α0 + γ0male + β1educ + u
Nothing, except the interpretation of α0 and 
γ0.
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Single Dummy Independent Variable
α0 is the intercept for females, which is now 
the base group, and α0 + γ0 is the intercept 
for males.

This implies the following relation between 
coefficients:

α0 = β0 + δ0 and   α0 + γ0 = β0 ⇒ γ0 = − δ0
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Example of γ0 > 0
wage

men: wage = (α0 + γ0 ) + β1educ

women: wage = α0 + β1educ

slope: β1

γ0

α0 + γ0

α0

educ0
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Single Dummy Independent Variable
In any application, it does not matter how we 
choose the base group, since this only affects 
the interpretation of the coefficients 
associated to the dummy variables, but it is 
important to keep track of which group is the 
base group.
Choosing a base group is usually a matter of 
convenience.
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Single Dummy Independent Variable
It would be possible also to drop the 
intercept and to include a dummy variable 
for each group or category.
The equation would then be
wage = µ0male + ν0 female + β1educ + u

where the intercept for men is µ0 and the 
intercept for women is ν0.
There is no dummy variable trap in this case 
because we do not have an overall intercept.
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Single Dummy Independent Variable
Important: Nothing changes about the 
mechanics of OLS or the statistical theory 
when some of the independent variables are 
dummy variables.
The only difference is in the interpretation of 
the coefficient of the dummy variable.
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Single Dummy Independent Variable
Hypothesis testing proceeds as usual.
In the above example the null hypothesis of 
no difference between men and women is 
H0: δ0 = 0.
The alternative that there is discrimination 
against women is H1: δ0 < 0.
We can test this by means of a one sided t
test.
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Dependent Variable is log(y)
A common specification in applied work has 
the dependent variable as log(y), with one or 
more dummy variables appearing as 
independent variables.
Example:
log(wage) = β0 + δ0 female + β1educ + u
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Dependent Variable is log(y)
How do we interpret the dummy variable 
coefficients in this case?
Because δ0 is the difference in log hourly 
wage between females and males, given the 
same amount of education (and the same 
error term u), δ0 has now a percentage
interpretation.
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Dependent Variable is log(y)
When log(y) is the dependent variable in a 
model, the coefficient on a dummy variable, 
when multiplied by 100, is interpreted as the 
percentage difference in y, with respect to the 
base group, holding all other factors fixed.
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Several Dummy Independent Variables
We can use several dummy independent 
variables in the same equation.

We can distinguish to cases:
1. Multiple categories or groups for a given 

attribute.
2. Several attributes.
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Multiple Categories or Groups
To measure geographical wage differentials 
we can define the following regional dummy 
variables,
regionj = 1 if observation belongs to region j,
regionj = 0 otherwise,
for j = 0,1,2,3,…,16 if there are 17 regions in 
the country, i.e. 17 CCAA in Spain.
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Multiple Categories or Groups
And estimate the following equation:

θj is the difference in hourly wage between 
region j and region 0, given the same amount 
of education (and the same error term u).
region 0 (whatever it is) is the base group, 
that is comparisons are made against this 
region.

16

0 1
1

j j
j

wage region edu u
=

= β + θ + β +∑
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Multiple Categories or Groups
The previous example illustrates a general 
principle for including dummy variables to 
indicate different categories or groups:

If the regression model is to have different 
intercepts for, say g categories or groups, 
we need to include g − 1 dummy variables
in the model along with an intercept.
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Multiple Categories or Groups
The intercept for the base group is the overall 
intercept in the model, and the dummy 
variable coefficient for a particular group 
represents the estimated difference in 
intercepts between that group and the base 
group.
Including g dummy variables along with an 
intercept will result in the dummy variable 
trap.
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Multiple Categories or Groups
An alternative is to include g dummy 
variables and to exclude an overall intercept.
This is not advisable, not only because 
testing differences relative to a base group 
becomes more difficult, but because this 
only works in the case when we only have 
one attribute.
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Several Attributes
Consider now the possibility to take into 
account two possible sources of wage 
discrimination, gender and marital status.

We say in this case that we have two 
attributes to take into consideration.
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Several Attributes
Then introduce the dummy variable, female to 
take into account gender, and the dummy 
variable married, to take into account marital 
status,

wage = β0 + δ0 female + φ0 married + β1educ + u

φ0 is the difference in hourly wage between 
those who are and are not married, given
gender, the same amount of education (and the 
same error term u).
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Several Attributes
Note that for each attribute we have a base 
group, male for gender and not married for 
marital status.
The overall intercept in the equation picks up 
the effect of both base groups, male and not 
married, so single men is the base group.
In the simplest you should introduce, for each 
attribute, a number of dummy variables equal 
to the number of categories less one.
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Ordinal Variables
An ordinal variable is a variable that 
represents a ranking, i.e. University rankings.
Any ordinal variable can be turned into a set 
of dummy variables, and these can be 
introduced in a regression model, after a bese
group have been selected.
If there are a lot of categories, it may make 
sense to group some together, i.e. top 10 
ranking, 11 – 25,…etc. 
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Interactions Among Dummy Variables
Just as variables with quantitative meaning 
can be interacted in regression models, so 
can dummy variables.

To allow for a possibility of an interaction 
between gender and marital status on wage 
discrimination we can add an interaction 
term between female and married in the 
above example.
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Interactions Among Dummy Variables
The equation to estimate is

wage = β0 + δ0 female + φ0 married +
ϕ0 female.married + β1educ + u

This allows the marriage premium to depend 
on gender.
This model allows us to obtain the estimated 
wage differential among all four groups, 
married-females, single-females, married-
men and single-men.
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Allowing for Different Slopes
So far we have only allowed for different 
intercepts for any number of groups in a 
multiple regression model.
There are also occasions for interacting 
dummy variables with explanatory variables 
that are not dummy variables to allow for a 
difference in slopes.
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Allowing for Different Slopes
How can we take into account different 
returns to education according to gender?

Consider the following model,

wage = β0 + δ0 female + β1educ + δ1 female.educ + u
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Allowing for Different Slopes
For males, female = 0, so

wage = β0 + β1educ + u
Intercept β0, and slope β1

For females, female = 1, so
wage = β0 + δ0 + (β1 + δ1) educ + u

Intercept β0 + δ0, and slope β1 + δ1
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Allowing for Different Slopes
Therefore, δ0 measures the difference in 
intercepts between women and men.
And, δ1 measures the difference in the return 
to education between women and men.
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Example of δ0 < 0 and δ1 < 0
wage

men: wage = β0 + β1educ

women: wage = ( β0 + δ0 ) + (β1 + δ1 ) educ

slope: β1+ δ1
β0

β0 + δ0

slope: β1

educ0
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Example of δ0 < 0 and δ1 < 0
This case shows a lower intercept and a 
lower slope for women than for men.
This means that women earn less than men 
at all levels of education, and the gap 
increases as educ gets larger.
An additional year of education shows a 
lower return for women than for men.
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Example of δ0 < 0 and δ1 > 0
wage

men: wage = β0 + β1educ

women: wage = ( β0 + δ0 ) + (β1 + δ1 ) educ

slope: β1+ δ1
β0

β0 + δ0

slope: β1

educ0
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Example of δ0 < 0 and δ1 < 0
This case shows a lower intercept for 
women than for men but a higher slope for 
women than for men.
This means that women earn less than men 
at low levels of education, but the gap 
narrows as education increases. At some 
point, a woman earns more than a man, 
given the same levels of education.
An additional year of education shows a 
higher return for women than for men.



Francisco J. Goerlich Introductory Econometrics 50

Allowing for Different Slopes
A test that the return to education is the same 
for women and men is stated as H0: δ1 = 0, 
which means that the slope of wage with 
respect to educ is the same for men and 
women.
Note that this hypothesis puts no restrictions 
on the difference in intercepts, δ0. A wage 
differential between men and women is 
allowed under this null, but it must be the 
same at all levels of education.
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Testing for Differences Across 
Groups

Sometimes, we wish to test the null 
hypothesis that two populations or groups 
follow the same regression function, 
against the alternative that one or more of 
the slopes differ across groups.
This is simply a test for the joint significance 
of the dummy and its interactions with all 
other independent variables.
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Testing for Differences Across 
Groups

So we estimate the model with all the 
interactions (unrestricted model) and without 
them (restricted model) and form an F
statistic.
Example: To test for differences in wage 
determination due to gender, we estimate the 
equation

wage = β0 + δ0 female + β1educ + δ1 female.educ + u



Francisco J. Goerlich Introductory Econometrics 53

Testing for Differences Across 
Groups

And test the hypothesis H0: δ0 = δ1 = 0.
The restricted model is

wage = β0 + β1educ + u
From the estimation of both equations we 
form the F statistic, either from the SSR or 
from the R2.
The same procedure works in cases with 
more explanatory variables.
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The Chow Test
It turns out that you can compute the proper 
F statistic without running the unrestricted 
model with the dummy and the interactions 
with all k continuous variables.
The key insight is that the unrestricted SSR
can be obtained from the SSR from the 
separate regressions for each group.
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The Chow Test
Example: In the wage determination example 
it can be shown that the SSR of the equation

wage = β0 + δ0 female + β1educ + δ1 female.educ + u
say SSRur, is equal to the sum of the SSR
obtained from estimating

wage = β0 + β1educ + u
for women, say SSR1, and for men, say SSR2.

SSRur = SSR1 + SSR2
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The Chow Test
Hence a test of the hypothesis H0: δ0 = δ1 = 0 
can be constructed by estimating

wage = β0 + β1educ + u
three times:
(i) for the whole sample, this is usually called the 
pooled regression, SSRr = SSRp, and 
(ii) and (iii) for each subgroup, women, SSR1, 
and men, SSR2, so SSRur = SSR1 + SSR2. 
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The Chow Test
And forming the F statistic

So the test procedure proceeds as usual.

( ) [ ]1 2

1 2

2( 1)
.

1
pSSR SSR SSR n k

F
SSR SSR k
− +⎡ ⎤ − +⎣ ⎦=

+ +



Francisco J. Goerlich Introductory Econometrics 58

The Chow Test
This particular F statistic is usually called the 
Chow statistic in econometrics.
Since the Chow test is just an F test, it is only 
valid under homoskedasticity.
In particular, under the null hypothesis, the 
error variances for the groups must be equal.
As usual, normality is not needed for 
asymptotic analysis.
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The Chow Test
The Chow test is really just a simple F test for 
exclusion restrictions, the dummy and all the 
interactions with the explanatory variables, 
but we have realized that the SSR for the 
unrestricted model is just the sum of the SSR
for each of the groups considered, so

SSRur = SSR1 + SSR2.
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The Chow Test
Note that we have k + 1 restrictions, the slope 
coefficients (interactions) plus the intercept 
(dummy).
Note also that the unrestricted model would 
estimate 2 different intercepts and 2 different 
slope coefficients, so df of the model is 
n − 2k − 2.
Hence the statistic, ( ) [ ]1 2

1 2

2( 1)
.

1
pSSR SSR SSR n k

F
SSR SSR k
− +⎡ ⎤ − +⎣ ⎦=

+ +
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The Chow Test
One important limitation of the Chow test, 
regardless of the method used to implement it, 
is that under the null there are no differences 
at all between the groups.
In many cases, it is more interesting to allow 
for an intercept difference between the groups 
under the null and then to test for slope 
differences only.
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The Chow Test
Example: In the wage determination example,

wage = β0 + δ0 female + β1educ + δ1 female.educ + u

this means testing H0: δ1 = 0 only.
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The Chow Test
We can easily perform this kind of test, 
(i) either by including the group dummy and 
all the interactions and test joint significance 
of the interaction terms only, or 
(ii) by forming the restricted SSR, SSRp, from 
the regression that allows an intercept shift 
only. In other words, we run a pooled 
regression and just include the dummy 
variable that distinguishes the two groups.
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The Chow Test
Note that the Chow test, in either form, can be 
generalized to more than two groups in a 
natural way.
In this case, running separate regressions for 
each group and the pooled regression is 
probably the easiest way to perform the test 
from a practical point of view.
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Linear Probability Model
So far we have seen how to incorporate 
qualitative information as explanatory 
variables in a multiple linear regression.
But in all models up until now, the dependent 
variable y has had quantitative meaning.
What happens if we want to use multiple 
regression to explain a qualitative event?
In the simplest case the event we would like 
to explain is a binary outcome.
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Linear Probability Model
In this case, our dependent variable, y, takes 
on only two values, zero and one.

Example: We want to explain labor force 
participation, so we can define

y = 1 if the person is in the labor force,
y = 0 if the person is out of the labor force.
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Linear Probability Model
What does it mean to write down a multiple 
regression model, such as,

y = β0 + β1x1 + β2x2 + … + βk xk + u
when y is a binary variable?
Since y can take on only two values, βj
cannot be interpreted as the change in y
given a one-unit increase in xj, holding all 
other factors fixed: y either changes from 
zero to one or from one to zero.
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Linear Probability Model
Nevertheless, the βj still have useful 
interpretations.
If we assume that the zero conditional mean 
assumption MLR.3 holds, E(u|x1,x2,...,xk) = 0, 
then we have, as always,

E(y | x) = β0 + β1x1 + β2x2 + … + βk xk

where x is shorthand for all of the 
explanatory variables.
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Linear Probability Model
The key point is that when y is a binary 
variable taking on the values zero and one,

E(y | x) = 1.P(y = 1 | x) + 0. P(y = 0 | x) = P(y = 1 | x)

So, it is always true that P(y = 1 | x) = E(y | x): 
the probability of “success”, i.e. the 
probability that y = 1, is the same as the 
expected value of y.
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Linear Probability Model
Thus, we have the important equation
P(y = 1 | x) = β0 + β1x1 + β2x2 + … + βkxk

which says that the probability of success, 
say p(x) = P(y = 1 | x), is a linear function of 
the xj.

This is an example of a binary response 
model, and P(y = 1 | x) is also called the 
response probability.
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Linear Probability Model
Because probabilities must sum to one, 
P(y = 0 | x) = 1 − P(y = 1 | x) is also a linear 
function of the xj.

The MLR model with a binary dependent 
variable is called the linear probability 
model (LPM) because the response 
probability is linear in the parameters βj. 
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Linear Probability Model
In the LPM, βj measures the change in the 
probability of success when xj changes by one 
unit, holding other factors fixed:

∆P(y = 1 | x) = βj ∆xj

With this in mind, the MLR model can allow 
us to estimate the effects of various 
explanatory variables on qualitative events.
The mechanics of OLS are, however, 
unchanged.
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Linear Probability Model
If we write the estimated equation as

we must now remember that     is the 
predicted probability of success.

The LPM is simple to estimate and simple to 
interpret but has some shortcomings that 
should be known.

0 1 1 2 2
ˆ ˆ ˆ ˆˆ ... k ky x x x= β + β + β + + β

ŷ
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Linear Probability Model
1. For certain values of the x´s,     can be 

outside the interval [0, 1]. Since these are 
predicted probabilities, this is nonsense.

2. A related problem is that a probability 
cannot be linearly related to the independent 
variables for all their possible values, since 
eventually we will be outside the interval 
[0, 1]. Probability models are essentially 
nonlinear.

ŷ
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Linear Probability Model
p(x)

x
0

1

0 1
ˆ ˆŷ x= β + β

For a probability model, even if the estimated model is a linear one, the 
population model cannot be linear in x.
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Linear Probability Model
3. Due to the binary nature of y, the LPM 

exhibits heteroskedasticity, so the LPM does 
violates one of the Gauss-Markov 
assumptions.
When y is a binary variable, its variance, 
conditional on x, is
Var(y | x) = E(y2 | x) − E(y | x)2 = p(x) − p(x)2

so
Var(y | x) = p(x).[1 − p(x)]
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Linear Probability Model
This means that, except in the case where the 
probability does not depend on any of the x´s, 
there must be heteroskedasticity in the LPM.
This does not cause bias in the OLS 
estimators, but standard formulas for OLS 
standard errors are not valid.
Hence, standard inference with the usual t and 
F statistics is not justified, even in large 
samples.
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Linear Probability Model
4. Normality is not an acceptable assumption, 

since the normal has continuous support on the 
real line and now y takes only two values, 0 
and 1.
In fact y has, conditional on the x´s, a 
bernoulli distribution.
This means that estimators will not be normal 
in finite samples, even they will be normal in 
large samples.
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Linear Probability Model
It is possible to correct the standard errors for 
heteroskedasticity, and modern software is able 
to do this.
In this case correct inference can be performed. 
In particular, the t statistics calculated with 
heteroskedasticity corrected standard errors 
have a standard normal distribution in large 
samples and they can be used to perform 
hypothesis testing or to construct CI.
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Linear Probability Model
Despite all these drawbacks the LPM is a good 
place to start when y is binary, and usually 
provides sensible estimates.
In terms of prediction of probabilities is best to 
use values of the independent values that are 
near the averages in the sample.
We can also include dummy variables as 
independent variables even if y is binary. The 
coefficient measures the predicted difference in 
probability with respect to the base group.
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Policy Analysis and
Program Evaluation

A typical use of dummy variables is when we 
are looking for a program effect.
For example, we may have individuals that 
received job training, or welfare benefits and 
we are interested in measuring changes in 
behavior after the program is in effect.
We need to remember that in the social 
sciences the control and treatment groups are 
not randomly assigned.
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Self-selection Problems
Usually individuals choose whether to 
participate in a program or not, which may 
lead to a self-selection problem.
If we can control for everything that is 
correlated with both, participation and the 
outcome of interest, then there is no problem.
Often, though, there are unobservables that 
are correlated with participation, and this 
leads to the usual omitted variable bias.
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