Multiple Regression Analysis

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}+u
$$

\author{

1. Estimation
}

Multiple Regression Analysis

- The main drawback of the SLR analysis for empirical work is that it is very difficult to draw "ceteris paribus" conclusions about how x affects y.
- Multiple Linear Regression (MLR) analysis is more amenable to "ceteris paribus" analysis because it allows us to explicitly control for many other factors that simultaneously affect the dependent variable, y.

A Model with Two Regressors

- Consider the population model

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u
$$

β_{0} the intercept,
β_{1} measures the Δy with respect to x_{1}, holding other factors fixed, and
β_{2} measures the Δy with respect to x_{2}, holding other factors fixed.

A Model with Two Regressors

- In this model the key assumption about how u is related to the regressors is

$$
\mathrm{E}\left(u \mid x_{1}, x_{2}\right)=0
$$

As in the SLR the important part of the assumption is $\mathrm{E}\left(u \mid x_{1}, x_{2}\right)=\mathrm{E}(u)$, given that, as long as an intercept, β_{0}, is included in the equation, we can assume that $\mathrm{E}(u)=0$

A Model with Two Regressors

\checkmark Note that this is equivalent to

$$
\mathrm{E}\left(y \mid x_{1}, x_{2}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}
$$

A Model with Two Regressors

- This model can accommodate fairly arbitrary forms of dependence between y and x.
- For example,

$$
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+u
$$

Now $\Delta y \approx\left(\beta_{1}+2 \beta_{2} x\right) \Delta x$.
So, in a particular application, the definitions of the independent variables are crucial, but for theoretical developments we can ignore these details.

A Model with k Regressors

There is no need to stop with two regressors.

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}+u
$$

β_{0} the intercept,
$\beta_{j}, j=1,2, \ldots, k$; are usually referred as slope parameters, that measure the Δy with respect to x_{j}, holding other factors fixed.
The variable u is the error term or disturbance. It contains factors other than $x_{1}, x_{2}, \ldots, x_{k}$ that affect y.

A Model with k Regressors

- The MLR has many similarities with the SLR.
* We have the same terminology.

As before, the "linear" term in MLR means that the population model is linear in parameters, and not necessarily in variables.

A Model with k Regressors

\diamond The key assumption now about how u is related to the regressors is

$$
\mathrm{E}\left(u \mid x_{1}, x_{2}, \ldots, x_{k}\right)=0
$$

\otimes At a minimum, this requires that all factors in u be uncorrelated with the regressors.
\diamond It also means that we have correctly accounted for the functional relationships between y and $x_{1}, x_{2}, \ldots, x_{k}$.

Ordinary Least Squares

Basic idea of regression is to estimate the population parameters, ($\beta_{0}, \beta_{1}, \ldots, \beta_{k}$), from a sample.
Let $\left\{\left(y_{i}, x_{i j}\right): i=1, \ldots, n ; j=1, \ldots, k\right\}$ denote a random sample of size n from the population.
For each observation in this sample, it will be the case that

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{k} x_{i k}+u_{i}
$$

Deriving OLS Estimates

- To derive the OLS estimates we need to realize that our key assumption implies that

1. $\mathrm{E}(u)=0$
2. $\mathrm{E}\left(x_{j} u\right)=0, j=1,2, \ldots, k$

A set of $k+1$ population moment conditions that can be imposed on the sample.
This give us a set of $k+1$ equations in $k+1$ unknowns.

Deriving OLS Estimates

- An alternate approach is to minimize a sum of squares residuals,
$\min _{\mathrm{b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{k}} \sum_{i=1}^{n}\left(y_{i}-\mathrm{b}_{0}-\mathrm{b}_{1} x_{i 1}-\mathrm{b}_{2} x_{i 2}-\ldots-\mathrm{b}_{k} x_{i k}\right)^{2}$
- First order conditions for this problem give us a set of $k+1$ equations in $k+1$ unknowns.
- See Appendix 3A. 1 for a derivation.

Deriving OLS Estimates

- In any case the system we have to solve is:

$$
\begin{array}{r}
\sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i 1}-\hat{\beta}_{2} x_{i 2}-\ldots-\hat{\beta}_{k} x_{i k}\right)=0 \\
\sum_{i=1}^{n} x_{i 1}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i 1}-\hat{\beta}_{2} x_{i 2}-\ldots-\hat{\beta}_{k} x_{i k}\right)=0 \\
\sum_{i=1}^{n} x_{i 2}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i 1}-\hat{\beta}_{2} x_{i 2}-\ldots-\hat{\beta}_{k} x_{i k}\right)=0 \\
\vdots \\
\sum_{i=1}^{n} x_{i k}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i 1}-\hat{\beta}_{2} x_{i 2}-\ldots-\hat{\beta}_{k} x_{i k}\right)=0
\end{array}
$$

Deriving OLS Estimates

\diamond A set of $k+1$ equations in $k+1$ unknowns.
\diamond This system is known as the normal equations.
\diamond We must assume that this system has a unique solution in terms of the $\hat{\beta}_{j}$'s, $j=0,1, \ldots, k$.
\diamond Note that for $\hat{\beta}_{0}$ the solution is

$$
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{X}_{1}-\hat{\beta}_{2} \bar{X}_{2}-\ldots-\hat{\beta}_{k} \bar{x}_{k}
$$

More on the OLS estimates

\diamond Given the OLS estimates, $\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}, \ldots, \hat{\beta}_{k}$, the fitted value for y when $x_{j}=x_{i j}, \forall j$ is given by

$$
\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i 1}+\hat{\beta}_{2} x_{i 2}+\ldots+\hat{\beta}_{k} x_{i k}
$$

\diamond This is the OLS regression line or Sample Regression Function (SRF). The value that the model predicts for y when $x_{j}=x_{i j}, \forall j$.
\diamond There is a fitted value for each observation in the sample.

More on the OLS estimates

* The residual for observation i is the difference between the actual y_{i} and its fitted value, \hat{y}_{i},

$$
\hat{u}_{i}=y_{i}-\hat{y}_{i}=y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i 1}-\hat{\beta}_{2} x_{i 2}-\ldots-\hat{\beta}_{k} x_{i k}
$$

- Again there are n residuals.
* The residual, \hat{u}, is an estimate of the error term, u, and is the difference between the fitted line (SRF) and the sample point.

More on the OLS estimates

\diamond There is a residual for each observation.
\diamond If $\hat{u}_{i}>0$, then $\hat{y}_{i}<y_{i}$, which means that, for this observation y_{i} is underpredicted.
\diamond If $\hat{u}_{i}<0$, then $\hat{y}_{i}>y_{i}$, which means that, for this observation y_{i} is overpredicted.

Interpreting Multiple Regression

More important than the details underlying the computation of the $\hat{\beta}_{j}$'s is the interpretation of the estimated equation.

The estimates, $\hat{\beta}_{j}$'s, have a partial effect, or "ceteris paribus" interpretations.

Interpreting Multiple Regression

\diamond From

$$
\begin{aligned}
\hat{y} & =\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2}+\ldots+\hat{\beta}_{k} x_{k} \\
\Delta \hat{y} & =\hat{\beta}_{1} \Delta x_{1}+\hat{\beta}_{2} \Delta x_{2}+\ldots+\hat{\beta}_{k} \Delta x_{k}
\end{aligned}
$$

so holding x_{2}, \ldots, x_{k} fixed implies that

$$
\Delta \hat{y}=\hat{\beta}_{1} \Delta x_{1}
$$

The coefficient on x_{1} measures the change in \hat{y} due to a one-unit increase in x_{1}, holding x_{2}, \ldots, x_{k} fixed.

Interpreting Multiple Regression

- Thus, we have controlled the variables x_{2}, \ldots, x_{k} when estimating the effect of x_{1} on y.
- That is, each $\hat{\beta}_{j}$ has a "ceteris paribus" interpretation. So including additional regressors allows us to obtain partial effects.

"Holding other Factors Fixed"

- The power of multiple regression analysis is that it allows us to do in nonexperimental environments what natural scientists are able to do in a controlled laboratory setting: keep other factors fixed.

Algebraic Properties of OLS

\diamond The sum of the OLS residuals is zero.
\diamond Thus, the sample average of the OLS residuals is zero as well.
\diamond The sample covariance between the regressors and the OLS residuals is zero.

The OLS regression line always goes through the mean of the sample.

Algebraic Properties (precise)

(1) $\sum_{i=1}^{n} \hat{u}_{i}=0 \Rightarrow \overline{\hat{u}}=\frac{\sum_{i=1}^{n} \hat{u}_{i}}{n}=0$
(2) $\sum_{i=1}^{n} x_{i j} \hat{u}_{i}=0 \quad \forall j=1,2, \ldots, k$
(3) $\left(\bar{y}, \bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{k}\right)$ is on the regression line

$$
\Rightarrow \quad \bar{y}=\hat{\beta}_{0}+\hat{\beta}_{1} \bar{x}_{1}+\hat{\beta}_{1} \bar{x}_{2}+\ldots+\hat{\beta}_{k} \bar{x}_{k}
$$

Algebraic Properties (precise)

Writing $y_{i}=\hat{y}_{i}+\hat{u}_{i} \quad$ we have

$$
\begin{equation*}
\sum_{i=1}^{n} \hat{u}_{i}=0 \tag{1}
\end{equation*}
$$

$$
\Rightarrow \quad \bar{y}=\overline{\hat{y}}
$$

(1) + (2) $\quad \sum_{i=1}^{n} \hat{u}_{i}=0$
(1) $+(2)$

$$
\left.\begin{array}{ll}
\sum_{i=1}^{n} x_{i j} \hat{u}_{i}=0 & \forall j
\end{array}\right\}
$$

$$
\Rightarrow \quad \sum_{i=1}^{n} \hat{y}_{i} \hat{u}_{i}=0
$$

this last one implies that the sample covariance
between fitted values, \hat{y}_{i}, and residuals, \hat{u}_{i}, is zero.

Algebraic Properties

- Thinking of each observation as being made up of an explained part, and an unexplained part, $y_{i}=\hat{y}_{i}+\hat{u}_{i}$, we can view OLS as decomposing each y_{i} into two parts, a fitted value and a residual. The fitted values and residuals are uncorrelated in the sample.

Sum of Squares Decomposition

\diamond Define:

1. Total Sum of Squares (SST)

$$
\mathrm{SST} \equiv \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

2. Explained Sum of Squares (SSE)

$$
\mathrm{SSE} \equiv \sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}
$$

3. Residual Sum of Squares (SSR)

$$
\mathrm{SSR} \equiv \sum_{i=1}^{n} \hat{u}_{i}^{2}
$$

Sum of Squares Decomposition

\diamond SST is a measure of the total sample variation in the y_{i}.
\diamond It can be shown that total variation in y, SST, can always be expressed as the sum of the explained variation, SSE, and the unexplained variation, SSR. Thus

$$
\mathrm{SST}=\mathrm{SSE}+\mathrm{SSR}
$$

Proof that SST = SSE + SSR

$$
\begin{aligned}
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} & =\sum_{i=1}^{n}\left[\left(y_{i}-\hat{y}_{i}\right)+\left(\hat{y}_{i}-\bar{y}\right)\right]^{2} \\
& =\sum_{i=1}^{n}\left[\hat{u}_{i}+\left(\hat{y}_{i}-\bar{y}\right)\right]^{2} \\
& =\sum_{i=1}^{n} \hat{u}_{i}^{2}+2 \sum_{i=1}^{n} \hat{u}_{i}\left(\hat{y}_{i}-\bar{y}\right)+\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2} \\
& =\operatorname{SSR}+\underbrace{\sum_{i=1}^{n} \hat{u}_{i}\left(\hat{y}_{i}-\bar{y}\right)}_{=0}+\operatorname{SSE}
\end{aligned}
$$

Given the above properties, so SST $=$ SSE + SSR

Goodness-of-Fit

How well our SRF fits our sample data?

- We can compute the fraction of the total sum of squares (SST) that is explained by the model (SSE), call this the R-squared, R^{2}, of regression:

$$
\mathrm{R}^{2}=\mathrm{SSE} / \mathrm{SST}=1-\mathrm{SSR} / \mathrm{SST}
$$

Goodness-of-Fit

$\diamond 100 . \mathrm{R}^{2}$ is the percentage of the sample variation in y that is explained by \hat{y} (the model).
$\diamond R^{2} \in[0,1]$
\diamond If $\mathrm{R}^{2}=1$, then we have a perfect fit, $\hat{u}_{i}=0$ for all observations.

- If $\mathrm{R}^{2}=0$, or close to zero, then we have a poor fit: very little variation in y is explained by \hat{y}_{i}.

Goodness-of-Fit

- It can be shown that R^{2} is equal to:

1. The square of the sample correlation coefficient between y_{i} and \hat{y}_{i}.

$$
\mathrm{R}^{2}=1-\frac{\sum_{i=1}^{n} \hat{u}_{i}^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}=\frac{\left(\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(\hat{y}_{i}-\overline{\hat{y}}\right)\right)^{2}}{\left(\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}\right)\left(\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}\right)}=r_{y, y}^{2}
$$

Please show this as an exercise!.

Goodness-of-Fit

- An important fact about R^{2} is that it never decreases, and it usually increases when another independent variable is added to a regression.
- This algebraic fact follows because, by definition, the sum of squared residuals never increases when additional regressors are added to the model.
- The fact that R^{2} never decreases when any variable is added to a regression makes it a poor tool for deciding whether one variable or several variables should be added to a model.
The factor that should determine whether an explanatory variable belongs in a model is whether the explanatory variable has a nonzero partial effect on y in the population.
- For this we need to perform significance statistical tests.

Goodness-of-Fit

- Because we want high explanatory power for our models, we look, other things equal, for high R^{2} in our regressions.
- It is worth emphasizing now that a seemingly low R^{2} does not necessarily mean that an OLS regression equation is useless.
- It is still possible that the OLS estimates are reliable estimates of the "ceteris paribus" effects of each regressor on y.
- Generally, a low R^{2} indicates that it is hard to predict individual outcomes on y with much accuracy, which is a general feature in the social sciences.
- Goodness of fit is not the only feature we look for in a regression equation.

A "Partialling Out" Interpretation

\diamond When applying OLS, we don't need to know explicit formulas for the $\hat{\beta}_{j}$'s that solves the above system of equations.
\diamond The software does the job for you.
\diamond Nevertheless, for certain derivations, it is useful to know explicit formulas for the $\hat{\beta}_{j}$'s .
\diamond In addition, these formulas also shed light on the workings of OLS.

A "Partialling Out" Interpretation

- Consider the case $k=2$,

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u
$$

then

$$
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n} \hat{r}_{11} y_{i}}{\sum_{i=1}^{n} \hat{r}_{i 1}^{2}}
$$

where $\hat{r}_{i 1}$ are the OLS residuals from a SLR of x_{1} on x_{2}, this is, residuals from the estimated regression $\hat{\chi}_{1}=\hat{\gamma}_{0}+\hat{\gamma}_{2} x_{2}$.

A "Partialling Out" Interpretation

- As an exercise show that the above formula is correct.
Hint:
(i) Consider the second normal equation,

$$
\sum_{i=1}^{n} x_{i 1}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i 1}-\hat{\beta}_{2} x_{i 2}\right)=0
$$

(ii) Use the algebraic properties of the MLR of y on x_{1} and x_{2} and of the SLR of x_{1} on x_{2}.

A "Partialling Out" Interpretation

- Previous equation implies that regressing y on x_{1} and x_{2} simultaneously gives same effect of x_{1} on y as regressing y on residuals from a previous regression of x_{1} on x_{2}.
This means that only the part of x_{1} that is uncorrelated with x_{2} is being related to y, so we're estimating the effect of x_{1} on y after x_{2} has been "partialled out".

A "Partialling Out" Interpretation

- In the general model with k regressors, $\hat{\beta}_{1}$ can still be written as in the previous equation, but residuals \hat{r}_{1} come from the regression of x_{1} on $x_{2}, x_{3}, \ldots, x_{k}$.
See Appendix 3A. 2 for a general proof.
Thus, $\hat{\beta}_{1}$ measures the effect of x_{1} on y after we have discounted the (linear) effect of $x_{2}, x_{3}, \ldots, x_{k}$, so these variables have been netted out.

A "Partialling Out" Interpretation

\diamond Note that the above argument also implies that MLR coefficients can always be estimated in two steps:

1. Regress one independent variables on the others plus a constant and take the residuals.
2. Regress y on these residuals.

Simple versus Multiple Regression

 Estimates ($k=2$)If we compare the OLS estimates in the SLR, say $\widetilde{\beta}_{1}$, and in the MLR, say $\hat{\beta}_{1}$. Generally, $\tilde{\beta}_{1} \neq \hat{\beta}_{1}$ unless:

1. $\hat{\beta}_{2}=0$, this is, the partial effect of x_{2} on y is zero, or
2. x_{1} and x_{2} are uncorrelated, $r_{x_{1}, x_{2}}=0$.

Regression Through the Origin

- Regression through the origin constraints the estimated intercept to be zero.
- If $\beta_{0} \neq 0$, then the slope estimates will be biased.
- Another problem is that if R^{2} is defined as 1 - SSR/SST then R^{2} can be negative.
- Advise: always include an intercept in your regressions.

Statistical Properties of OLS

* We defined de population model
$y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}+u$, and we claimed that the key assumption for the MLR analysis to be useful is that $\mathrm{E}\left(u \mid x_{1}, \ldots, x_{k}\right)=0$.
- We now return to the population model and study the statistical properties of OLS estimators, $\hat{\beta}_{j}$, considered as estimators of the population parameters, β_{j}.

Assumptions

\diamond MLR.1: LINEAR IN PARAMETERS
The population model is linear in parameters and given by

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}+u
$$

Assumptions

* MLR.2: RANDOM SAMPLING

We have a random sample from of size n, $\left\{\left(y_{i}, x_{i j}\right): i=1,2,3, \ldots, n ; j=1,2, \ldots, k\right\}$, from the population model.
Thus we can write the population model in terms of the sample,

$$
\begin{gathered}
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{k} x_{i k}+u_{i} \\
i=1,2,3, \ldots, n
\end{gathered}
$$

Assumptions

\diamond MLR.3: ZERO CONDITIONAL MEAN

$$
\mathrm{E}\left(u \mid x_{1}, \ldots, x_{k}\right)=0
$$

For a random sample, this assumption implies that

$$
\mathrm{E}\left(u_{i} \mid x_{i 1}, \ldots, x_{i k}\right)=0, \quad i=1,2,3, \ldots, n
$$

NOTE: Derivations will be conditional on the sample values, x 's.

Assumption MLR. 3

- Assumption MLR. 3 can fail if:

1. An important factor that is correlated with any $x_{1}, x_{2}, \ldots, x_{k}$ is omitted from the estimated equation (MLR. 3 always fail in this case).
2. The functional relationship between y and the explanatory variables, x 's, is misspecified.

Assumption MLR.3: Notation

- When MLR. 3 holds, we often say that we have exogenous explanatory variables. If x_{j} is correlated with u for any reason, then x_{j} is said to be an endogenous explanatory variable.
- We shall denote $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$.

Assumptions

- MLR.4: NO PERFECT COLLINEARITY

In the sample, and therefore in the population, none of the independent variables is constant, and there are no exact linear relationships among the independent variables.

Assumption MLR. 4

* Assumption MLR. 4 concerns only the independent variables.
* If an independent variable is an exact linear combination of the other independent variables, then we say the model suffers from perfect collinearity, and it cannot be estimated by OLS.
* Note that Assumption MLR. 4 does allow the independent variables to be correlated; they just cannot be perfectly correlated.

Assumption MLR. 4

\diamond Assumption MLR. 4 can fail if we are not careful in specifying our model, i.e. if we introduce an accounting relationship between explanatory variables.
仓 Assumption MLR. 4 also fails if the sample size, n, is too small in relation to the number of parameters being estimated. In particular, MLR. 4 fails if $n<k+1$.
人 Intuitively, this makes sense: to estimate $k+1$ parameters, we need at least $k+1$ observations.

Assumption MLR. 4

- If the model is carefully specified and $n \geq k+1$, Assumption MLR. 4 can fail in rare cases only due to bad luck in collecting the sample.
- Under MLR. 1 through MLR. 4 OLS estimators are unbiased.

Unbiasedness of OLS

\diamond THEOREM 3.1 UNBIASEDNESS OF OLS Under assumptions MLR. 1 to MLR. 4

$$
E\left(\hat{\beta}_{j}\right)=\beta_{j} \quad j=0,1,2, \ldots, k
$$

PROOF:
Appendix 3A. 3

Unbiasedness of OLS

* Remember that when we say that OLS is unbiased under Assumptions MLR. 1 through MLR.4, we mean that the procedure by which the OLS estimates are obtained is unbiased when we view the procedure as being applied across all possible random samples.
This property says nothing about a particular sample.

Misspecification

* We speak of misspecification when we end up estimating a model different from the population model.
Why are we going to do such a thing?
- Because de population model, at least in social science, is always unknown. So there is always a chance that the estimated model is misspecified.

Misspecification

- There are many types of misspecification, we shall consider now only two:

1. Inclusion of an irrelevant variable.
2. Exclusion a relevant variable.

- Remember that the statistical properties take the population model as benchmark.

Inclusion of an Irrelevant Variable

- One (or more) of the independent variables included in the regression model don't belong to the population model, i.e. it has no partial effect on y in the population, that is, its population coefficient is zero.
Population:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u
$$

In terms of conditional expectations:

$$
\mathrm{E}\left(y \mid x_{1}, x_{2}, x_{3}\right)=\mathrm{E}\left(y \mid x_{1}, x_{2}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}
$$

Inclusion of an Irrelevant Variable

Estimated model:

$$
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2}+\hat{\beta}_{3} x_{3}
$$

What are the effects on the OLS estimates?

1. In terms of unbiasedness there is no effect, $\hat{\beta}_{j}$ are all unbiased.
2. The variance, however, will increase with respect to the case in which x_{3} is (correctly) omitted.

This is a general result.

Exclusion of a Relevant Variable

* One variable that actually belongs to the population model is omitted in the regression model.
Population:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u
$$

Estimated model:

$$
\tilde{y}=\tilde{\beta}_{0}+\tilde{\beta}_{1} x_{1}
$$

Exclusion of a Relevant Variable

- Our primary interest is in the partial effect of x_{1} on y.
- In order to get un unbiased estimator of β_{1}, we should regress y on x_{1} and x_{2}.
\diamond However, due to ignorance or data unavailability, we estimate the model by excluding x_{2}.
Then the estimator of β_{1} will be biased.

Exclusion of a Relevant Variable

$$
\begin{aligned}
\tilde{\beta}_{1} & =\frac{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right) y_{i}}{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)(\overbrace{\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+u_{i}}^{y_{i}})}{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)^{2}} \\
& =\beta_{1}+\beta_{2} \frac{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right) x_{i 2}}{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)^{2}}+\frac{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right) u_{i}}{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)^{2}}
\end{aligned}
$$

Exclusion of a Relevant Variable

- Taking expectations conditional on the sample values of x_{1} and x_{2}

$$
E\left(\tilde{\beta}_{1}\right)=\beta_{1}+\beta_{2} \frac{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right) x_{i 2}}{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)^{2}}
$$

- Thus $E\left(\tilde{\beta}_{1}\right) \neq \beta_{1}$ in general: so $\tilde{\beta}_{1}$ is biased for β_{1}.

Exclusion of a Relevant Variable

\diamond The ratio $\frac{\sum_{n=1}^{n}\left(x_{n}-\overline{x_{1}}\right) x_{k_{2}}}{\sum_{i=1}^{n}\left(x_{n}-\bar{x}_{1}\right)^{2}}$ is just the OLS slope
coefficient from the regression of x_{2} on x_{1} :

$$
\hat{x}_{2}=\tilde{\delta}_{0}+\tilde{\delta}_{1} x_{1}
$$

\diamond So $E\left(\tilde{\beta}_{1}\right)=\beta_{1}+\beta_{2} \tilde{\delta}_{1}$, which implies that the bias in $\tilde{\beta}_{1}$ is $E\left(\tilde{\beta}_{1}\right)-\beta_{1}=\beta_{2} \tilde{\delta}_{1}$.
This is often called the omitted variable bias.

Exclusion of a Relevant Variable

\diamond There are two cases where $\tilde{\beta}_{1}$ is unbiased:

1. If $\beta_{2}=0$, so there is no misspecification.
2. If $\tilde{\delta}_{1}=0$, so x_{1} and x_{2} are uncorrelated in the sample.
\diamond The size of the bias is determined by the sizes of β_{2} and $\tilde{\delta}_{1}$.

- The sign of the bias depends on the signs of both β_{2} and $\tilde{\delta}_{1}$.

Summary of Direction of Bias

	$\operatorname{Corr}\left(x_{1}, x_{2}\right)>0$	$\operatorname{Corr}\left(x_{1}, x_{2}\right)<0$
$\beta_{2}>0$	Positive bias	Negative bias
$\beta_{2}<0$	Negative bias	Positive bias

Exclusion of a Relevant Variable

- If $E\left(\tilde{\beta}_{1}\right)>\beta_{1}$, then we say that $\tilde{\beta}_{1}$ has un upward bias.
- If $E\left(\tilde{\beta}_{1}\right)<\beta_{1}$, then we say that $\tilde{\beta}_{1}$ has a downward bias.
- The phrase biased towards zero refers to cases where $E\left(\tilde{\beta}_{1}\right)$ is closer to zero than β_{1}.

Omitted Variable Bias:

More General Cases

- In a general model we must remember that correlation between a single explanatory variable and the error term generally results in all OLS estimators being biased.
- Beyond that we cannot determine the direction of the bias, except in special cases.
Technically, can only sign the bias for the more general case if all of the included x 's are uncorrelated

Variance of the OLS Estimators

* Now we know that the sampling distribution of our estimator is centered around the true parameter.
- How spread out this distribution is? This will be a measure of uncertainty.
- It is much easier to think about this variance under an additional assumption.

Assumptions

\diamond MLR.5: HOMOSKEDASTICITY

$$
\operatorname{Var}(u \mid \boldsymbol{x})=\sigma^{2}
$$

\diamond Assumptions MLR.1-MLR. 5 are collectively known as the Gauss-Markov assumptions.

Variance of the OLS Estimators

\diamond The homoskedasticity assumption is quite distinct from the zero conditional mean assumption, $\mathrm{E}(u \mid \boldsymbol{x})=0$. MLR. 3 involves the expected value of u, while MLR. 5 concerns the variance of u.
\diamond Homoskedasticity plays no role in showing that the $\hat{\beta}_{j}$ are unbiased.
\diamond We add MLR. 5 because it simplifies the variance calculations and because it implies that OLS has certain efficiency properties.

Variance of the OLS Estimators

$\diamond \operatorname{Var}(u \mid \boldsymbol{x})=\sigma^{2}=\mathrm{E}\left(u^{2} \mid \boldsymbol{x}\right)-[\mathrm{E}(u \mid \boldsymbol{x})]^{2}$
$\mathrm{E}(u \mid \boldsymbol{x})=0$, so $\sigma^{2}=\mathrm{E}\left(u^{2} \mid \boldsymbol{x}\right)=\mathrm{E}\left(u^{2}\right)=\operatorname{Var}(u)$
\diamond Thus σ^{2} is also the unconditional variance, called the error variance.
$\diamond \sigma$, the square root of the error variance, is called the standard deviation of the error.

Variance of the OLS Estimators

\diamond We can say:

$$
\begin{gathered}
\mathrm{E}(y \mid \boldsymbol{x})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k} \\
\text { and } \operatorname{Var}(y \mid \boldsymbol{x})=\sigma^{2} .
\end{gathered}
$$

\otimes So, the conditional expectation of y given x is linear in \boldsymbol{x}, but the variance of y given x is constant.
\diamond When $\operatorname{Var}(u \mid \boldsymbol{x})$ depends on \boldsymbol{x}, the error term is said to exhibit heteroskedasticity. Since $\operatorname{Var}(u \mid \boldsymbol{x})=\operatorname{Var}(y \mid \boldsymbol{x})$, heteroskedasticity is present whenever $\operatorname{Var}(\boldsymbol{y} \mid \boldsymbol{x})$ is a function of \boldsymbol{x}.

Variance of OLS estimators

\diamond THEOREM 3.2 SAMPLING VARIANCES OF

 OLS SLOPE ESTIMATORSUnder assumptions MLR. 1 to MLR. 5

$$
\operatorname{Var}\left(\hat{\beta}_{j}\right)=\frac{\sigma^{2}}{\operatorname{SST}_{j}\left(1-\mathrm{R}_{j}^{2}\right)} \quad j=1,2,3, \ldots, k
$$

where these are conditional on the sample values $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\}, \mathrm{R}_{j}^{2}$ is the R-squared from regressing x_{j} on all other x 's and

$$
\operatorname{SST}_{j}=\sum_{i=1}^{n}\left(x_{i j}-\bar{x}_{j}\right)^{2}
$$

Variance of OLS estimators

PROOF: Appendix 3A. 5
All of the Gauss-Markov assumptions are used in obtaining this formula.

* The size of $\operatorname{Var}\left(\hat{\beta}_{j}\right)$ is practically important. A larger variance means a less precise estimator, and this translates into larger confidence intervals and less accurate hypotheses tests.
* Theorem 3.2 shows that the variance depends on three factors: $\sigma^{2}, \mathrm{SST}_{j}$ and R_{j}^{2}.

Variance of OLS estimators: σ^{2}

* The larger the error variance, σ^{2}, the larger the variance of the slope estimates.
* This is not at all surprising: more "noise" in the equation, a larger σ^{2}, makes it more difficult to estimate the partial effect of any x 's on y, and this is reflected in higher variances for the OLS slope estimators.
* Since σ^{2} is a feature of the population, it has nothing to do with the sample size.

Variance of OLS estimators: SST $_{j}$

$\stackrel{\text { Wher larger the the }}{ }$ $\operatorname{Var}\left(\hat{\beta}_{j}\right)$.

* Everything else being equal, for estimating β_{j} we prefer to have as much sample variation in x_{j} as possible.
\diamond This is the component of the variance that systematically depends on the sample size.
$\geqslant \operatorname{So} \uparrow n \Rightarrow \downarrow \operatorname{Var}\left(\hat{\beta}_{j}\right)$.
$\diamond \mathrm{SST}_{j}=0$ is not allowed by Assumption MLR.4.

Variance of OLS estimators: R_{j}^{2}

$\diamond \mathrm{R}_{j}^{2}$ is the proportion of the total variation in x_{j} that can be explained by the other independent variables appearing in the equation.
\diamond For a given σ^{2} and SST_{j}, the smallest $\operatorname{Var}\left(\hat{\beta}_{j}\right)$ is obtained when $\mathrm{R}_{j}^{2}=0$, which happens if, and only if, x_{j} has zero sample correlation with every other independent variable.

* The case $\mathrm{R}_{j}^{2}=1$ is ruled out by Assumption MLR.4, since $\mathrm{R}_{j}^{2}=1$ means that, in the sample, x_{j} is an exact linear combination of the other x 's in the regression.

Variance of OLS estimators: R_{j}^{2}

\diamond A more relevant case is when R_{j}^{2} is "close" to 1 .
$\stackrel{\text { As } R_{j}^{2} \rightarrow 1 \Rightarrow \operatorname{Var}\left(\hat{\beta}_{j}\right) \rightarrow \infty}{ }$

* High, but not perfect, correlation between two or more independent variables is called multicollinearity.
\diamond The case where R_{j}^{2} is "close" to one is not a violation of Assumption MLR. 4.
* Since multicollinearity violates none of our assumptions, the "problem" of multicollinearity is not really well-defined.

Variance of OLS estimators: R_{j}^{2}

\diamond We say that multicollinearity arises for estimating β_{j} when R_{j}^{2} is "close" to one, but there is no absolute number that we can cite to conclude that multicollinearity is really a problem for the precision of the estimates.
\diamond Although the problem of multicollinearity cannot be clearly defined, it is true, that for estimating β_{j}, it is better to have less correlation between x_{j} and the other independent variables.
\diamond The effect of $\mathrm{R}_{j}^{2} \rightarrow 1$ is the same as $\mathrm{SST}_{j} \rightarrow 0$.

Misspecified Models

\diamond Consider de population model $(k=2)$

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u
$$

\diamond Consider two estimators of β_{1} :

1. From the regression of y on x_{1} and x_{2}

$$
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2}
$$

2. From the regression of y on x_{1} only

$$
\tilde{y}=\tilde{\beta}_{0}+\tilde{\beta}_{1} x_{1}
$$

Misspecified Models

From the previous results:

$$
\operatorname{Var}\left(\hat{\beta}_{1}\right)=\frac{\sigma^{2}}{\operatorname{SST}_{1}\left(1-\mathrm{R}_{1}^{2}\right)}
$$

and

$$
\operatorname{Var}\left(\tilde{\beta}_{1}\right)=\frac{\sigma^{2}}{\operatorname{SST}_{1}}
$$

Misspecified Models

\diamond Assuming x_{1} and x_{2} are not uncorrelated, we can draw the following conclusions:

1. When $\beta_{2}=0, \tilde{\beta}_{1}$ and $\hat{\beta}_{1}$ are both unbiased, and $\operatorname{Var}\left(\tilde{\beta}_{1}\right)<\operatorname{Var}\left(\hat{\beta}_{1}\right)$.
2. When $\beta_{2} \neq 0, \tilde{\beta}_{1}$ is biased, $\hat{\beta}_{1}$ is unbiased, and $\operatorname{Var}\left(\tilde{\beta}_{1}\right)<\operatorname{Var}\left(\hat{\beta}_{1}\right)$.

Misspecified Models

* Including irrelevant variables ($\beta_{2}=0$) increases the variance of the estimators, but they are unbiased.
Excluding relevant variables $\left(\beta_{2} \neq 0\right)$ causes the variance to decrease (assuming we condition on x_{1} and x_{2}), but the estimator is biased. The variance is not centered at the population parameter we are interested in.

Estimating the Error Variance

\diamond We don't know what the error variance, σ^{2}, is, and we cannot estimate it from the errors, u_{i}, because we don't observe the errors.
$\diamond \sigma^{2}=\mathrm{E}\left(u^{2}\right)$, so an unbiased "estimator" would be $n^{-1} \sum_{i=1}^{n} u_{i}^{2}$.
\diamond Unfortunately, this is not a true estimator, because we don't observe the errors u_{i}. But, we do have estimates of the u_{i}, namely the OLS residuals \hat{u}_{i}.

Estimating the Error Variance

* The relation between errors and residuals is given by

$$
\hat{u}_{i}=y_{i}-\hat{y}_{i}=u_{i}-\left(\hat{\beta}_{0}-\beta_{0}\right)-\sum_{j=1}^{k}\left(\hat{\beta}_{j}-\beta_{j}\right) x_{i j}
$$

\diamond Hence \hat{u}_{i} is not the same as u_{i}, although the difference between them does have an expected value of zero.

Estimating the Error Variance

- If we replace the errors with the OLS residuals, we have $n^{-1} \sum_{i=1}^{n} \hat{u}_{i}^{2}=\mathrm{SSR} / n$
\diamond This is a true estimator, because it gives a computable rule for any sample of the data, x and y.
\diamond However, this estimator is biased, essentially because it does not account for the $k+1$ restrictions that must be satisfied by the OLS residuals, $n^{-1} \sum_{i=1}^{n} \hat{u}_{i}=0$ and $n^{-1} \sum_{i=1}^{n} x_{i j} \hat{u}_{i}=0 \quad \forall j$

Estimating the Error Variance

\diamond One way to view these restrictions is this: If we know $n-(k+1)$ of the residuals, we can get the other $k+1$ residuals by using the restrictions implied by the moment conditions.
\diamond Thus, there are only $n-(k+1)$ degrees of freedom ($d f$) in the OLS residuals, as opposed to n degrees of freedom in the errors. $d f$: observations - parameters estimated

Estimating the Error Variance

The unbiased estimator of σ^{2} that we will use makes a degrees of freedom adjustment:

$$
\hat{\sigma}^{2}=\frac{\sum_{i=1}^{n} \hat{u}_{i}^{2}}{n-k-1}=\frac{\mathrm{SSR}}{n-k-1}
$$

THEOREM 2.3 UNBIASED ESTIMATOR OF σ^{2} Under assumptions MLR. 1 to MLR. 5

$$
E\left(\hat{\sigma}^{2}\right)=\sigma^{2}
$$

Estimating the Error Variance

- If $\hat{\sigma}^{2}$ is plugged into the variance formulas we then have unbiased estimators of $\operatorname{Var}\left(\hat{\beta}_{j}\right)$.
- The natural estimator of σ is $\hat{\sigma}=\sqrt{\hat{\sigma}^{2}}$ and is called the standard error of the regression.
- Since $\operatorname{sd}\left(\hat{\beta}_{j}\right)=\frac{\sigma}{\left[\operatorname{SST}_{j}\left(1-R_{j}^{2}\right)\right]^{\frac{1}{2}}}$,
its natural estimator is $\operatorname{se}\left(\hat{\beta}_{j}\right)=$

$$
=\sqrt{\sqrt{\sum_{i=1}^{n}\left(x_{i j}-\bar{x}_{j}\right)^{2}\left(1-\mathrm{R}_{j}^{2}\right)}}
$$

Estimating the Error Variance

- Note that se $\left(\hat{\beta}_{j}\right)$, the standard error of $\hat{\beta}_{j}$, is view as a random variable when we think of running OLS over different samples; this is because $\hat{\sigma}$ varies with different samples.
- The standard error of any estimate gives us an idea of how precise the estimator is.

Efficiency of OLS:

Gauss-Markov Theorem

- THEOREM 3.2 GAUSS-MARKOV THEOREM Under assumptions MLR. 1 through MLR. 5 OLS are the Best Linear Unbiased Estimators (BLUE) of the population parameters.

PROOF: Appendix 3A. 6

Gauss-Markov Theorem

\diamond What is the meaning of the Gauss-Markov Theorem?

* If we restrict the set of eligible estimators to the estimators that are:

1. Linear, so $b_{j}=\sum_{i=1}^{n} w_{i j} y_{i}$
2. Unbiased, so the weights, w_{j}, satisfy some restrictions.

Then, OLS is "best".
Where "best" is defined as the smallest variance, so

$$
\operatorname{Var}\left(\hat{\beta}_{j}\right) \leq \operatorname{Var}\left(b_{j}\right) \quad j=0,1,2, \ldots, k
$$

Gauss-Markov Theorem

- Thus, if MLR. 1 through MLR. 5 holds then we use OLS.

Appendix: Algebra for $k=2$

\diamond The system we have to solve is:

$$
\begin{aligned}
\sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i 1}-\hat{\beta}_{2} x_{i 2}\right) & =0 \\
\sum_{i=1}^{n} x_{i 1}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i 1}-\hat{\beta}_{2} x_{i 2}\right) & =0 \\
\sum_{i=1}^{n} x_{i 2}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i 1}-\hat{\beta}_{2} x_{i 2}\right) & =0
\end{aligned}
$$

Appendix: Algebra for $k=2$

- From the first equation:

$$
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}_{1}-\hat{\beta}_{2} \bar{x}_{2}
$$

and substituting in the other two:

$$
\begin{aligned}
& \sum_{i=1}^{n} x_{i 1}\left(y_{i}-\bar{y}-\hat{\beta}_{1}\left(x_{i 1}-\bar{x}_{1}\right)-\hat{\beta}_{2}\left(x_{i 2}-\bar{x}_{2}\right)\right)=0 \\
& \sum_{i=1}^{n} x_{i 2}\left(y_{i}-\bar{y}-\hat{\beta}_{1}\left(x_{i 1}-\bar{x}_{1}\right)-\hat{\beta}_{2}\left(x_{i 2}-\bar{x}_{2}\right)\right)=0
\end{aligned}
$$

Appendix: Algebra for $k=2$

\diamond Alternatively:

$$
\begin{aligned}
& \hat{\beta}_{1} \sum_{i=1}^{n} x_{i 1}\left(x_{i 1}-\bar{x}_{1}\right)+\hat{\beta}_{2} \sum_{i=1}^{n} x_{i 1}\left(x_{i 2}-\bar{x}_{2}\right)=\sum_{i=1}^{n} x_{i 1}\left(y_{i}-\bar{y}\right) \\
& \hat{\beta}_{1} \sum_{i=1}^{n} x_{i 2}\left(x_{i 1}-\bar{x}_{1}\right)+\hat{\beta}_{2} \sum_{i=1}^{n} x_{i 2}\left(x_{i 2}-\bar{x}_{2}\right)=\sum_{i=1}^{n} x_{i 2}\left(y_{i}-\bar{y}\right)
\end{aligned}
$$

$$
\hat{\beta}_{1} \sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)^{2}+\hat{\beta}_{2} \sum_{i=1}^{n} x_{i 1}\left(x_{i 2}-\bar{x}_{2}\right)=\sum_{i=1}^{n} x_{i 1}\left(y_{i}-\bar{y}\right)
$$

$$
\hat{\beta}_{1} \sum_{i=1}^{n} x_{i 2}\left(x_{i 1}-\bar{x}_{1}\right)+\hat{\beta}_{2} \sum_{i=1}^{n}\left(x_{i 2}-\bar{x}_{2}\right)^{2}=\sum_{i=1}^{n} x_{i 2}\left(y_{i}-\bar{y}\right)
$$

Appendix: Algebra for $k=2$

- Solving for $\hat{\beta}_{2}$

$$
\hat{\beta}_{2}=\frac{\sum_{i=1}^{n} x_{i 2}\left(y_{i}-\bar{y}\right)-\hat{\beta}_{1} \sum_{i=1}^{n} x_{i 2}\left(x_{i 1}-\bar{x}_{1}\right)}{\sum_{i=1}^{n}\left(x_{i 2}-\bar{x}_{2}\right)^{2}}
$$

and substituting into the other equation

$$
\hat{\beta}_{1} \sum_{i=1}^{n}\left(x_{11}-\bar{x}_{1}\right)^{2}+\frac{\sum_{i=1}^{n} x_{i 2}\left(y_{i}-\bar{y}\right)-\hat{\beta}_{1} \sum_{i=1}^{n} x_{i 2}\left(x_{11}-\bar{x}_{1}\right)}{\sum_{i=1}^{n}\left(x_{i 2}-\bar{x}_{2}\right)^{2}} \sum_{i=1}^{n} x_{11}\left(x_{i 2}-\bar{x}_{2}\right)=\sum_{i=1}^{n} x_{i 1}\left(y_{i}-\bar{y}\right)
$$

Appendix: Algebra for $k=2$

Δ Solving for $\hat{\beta}_{1}$

$$
\begin{aligned}
& \hat{\beta}_{1}\left(\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)^{2}\right)\left(\sum_{i=1}^{n}\left(x_{i 2}-\bar{x}_{2}\right)^{2}\right)-\hat{\beta}_{1}\left[\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)\left(x_{i 2}-\bar{x}_{2}\right)\right]^{2}= \\
& \quad=\left(\sum_{i=1}^{n} x_{i 1}\left(y_{i}-\bar{y}\right)\right)\left(\sum_{i=1}^{n}\left(x_{i 2}-\bar{x}_{2}\right)^{2}\right)-\left(\sum_{i=1}^{n} x_{i 2}\left(y_{i}-\bar{y}\right)\right)\left(\sum_{i=1}^{n} x_{i 1}\left(x_{i 2}-\bar{x}_{2}\right)\right)
\end{aligned}
$$

Which eventually lead us to

$$
\hat{\beta}_{1}=\frac{\left(\sum_{i=1}^{n} x_{1}\left(y_{i}-\bar{y}\right)\right)\left(\sum_{i=1}^{n}\left(x_{12}-\bar{x}_{2}\right)^{2}\right)-\left(\sum_{i=1}^{n} x_{12}\left(y_{1}-\bar{y}\right)\right)\left(\sum_{i=1}^{n} x_{n}\left(x_{12}-\bar{x}_{2}\right)\right)}{\left(\sum_{i=1}^{n}\left(x_{1}-\bar{x}_{1}\right)^{2}\right)\left(\sum_{i=1}^{n}\left(x_{12}-\bar{x}_{2}\right)^{2}\right)-\left[\sum_{i=1}^{n}\left(x_{11}-\overline{\overline{1}}_{1}\right)\left(x_{12}-\bar{x}_{2}\right)\right]^{2}}
$$

Appendix: Algebra for $k=2$

This shows that for the general case, when $k \geq 2$, ordinary algebra is inadequate. In this case it is necessary to switch to matrix algebra (See Appendix E).
Defining

$$
r_{x_{1}, x_{2}}^{2}=\frac{\left(\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)\left(x_{i 2}-\bar{x}_{2}\right)\right)^{2}}{\left(\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)^{2}\right)\left(\sum_{i=1}^{n}\left(x_{i 2}-\bar{x}_{2}\right)^{2}\right)}
$$

we can write $\hat{\beta}_{1}$ as

Appendix: Algebra for $k=2$

$$
\begin{aligned}
\hat{\beta}_{1} & =\frac{\left(\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)\left(y_{i}-\bar{y}\right)\right)\left(\sum_{i=1}^{n}\left(x_{i 2}-\bar{x}_{2}\right)^{2}\right)-\left(\sum_{i=1}^{n}\left(x_{i 2}-\bar{x}_{2}\right)\left(y_{i}-\bar{y}\right)\right)\left(\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)\left(x_{i 2}-\bar{x}_{2}\right)\right)}{\left(\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)^{2}\right)\left(\sum_{i=1}^{n}\left(x_{i 2}-\bar{x}_{2}\right)^{2}\right)\left(1-r_{x_{1}, x_{2}}^{2}\right)} \\
& =\frac{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)\left(y_{i}-\bar{y}\right)}{\left(\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)^{2}\right)\left(1-r_{x_{1}, x_{2}}^{2}\right)}-\frac{\left(\sum_{i=1}^{n}\left(x_{i 2}-\bar{x}_{2}\right)\left(y_{i}-\bar{y}\right)\right) \cdot r_{11, x_{2}}}{\sqrt{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(x_{i 2}-\bar{x}_{2}\right)^{2}}\left(1-r_{\left.x_{1}, x_{2}\right)}^{2}\right.}
\end{aligned}
$$

Appendix: Algebra for $k=2$

1. If $r_{x_{1}, x_{2}}^{2}=0$ then $\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)^{2}}=\tilde{\beta}_{1}$

so the OLS slope estimates in the MLR of y

 on x_{1} and x_{2} and the SLR of y on x_{1} are the same.Remember that $r_{x_{1}, x_{2}}^{2}$ is a measure of multicolinearity in this model.

Appendix: Algebra for $k=2$

$$
\text { 2. If } \hat{\beta}_{2}=0 \text { then } \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{11}-\bar{x}_{1}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{11}-\bar{x}_{1}\right)^{2}}=\tilde{\beta}_{1}
$$

so, when the partial effect of x_{2} on y is zero, $\hat{\beta}_{2}=0$, then the MLR of y on x_{1} and x_{2} and the SLR of y on x_{1} are the same.
We encountered these two cases before.

Appendix: Algebra for $k=2$

3. Moreover we can write

$$
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)^{2}}-\hat{\beta}_{2} \frac{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)\left(x_{i 2}-\bar{x}_{2}\right)}{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)^{2}}
$$

so letting $\tilde{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{11}-\bar{x}_{1}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)^{2}}$,
the OLS slope estimate in the SLR of y on x_{1},

Appendix: Algebra for $k=2$

we see that $\hat{\beta}_{1}=\tilde{\beta}_{1}-\hat{\beta}_{2} \tilde{\delta}_{1}$, where

$$
\tilde{\delta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)\left(x_{i 2}-\bar{x}_{2}\right)}{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)^{2}} \text { is just the OLS slope }
$$

coefficient from the SLR of x_{2} on x_{1}.
Hence $\tilde{\beta}_{1}=\hat{\beta}_{1}+\hat{\beta}_{2} \tilde{\delta}_{1}$, which shows the relation between the SLR and the MLR coefficient estimates and it is another way to study the omitted variable bias.

Appendix: $\mathrm{R}^{2}=r_{y, \hat{y}}^{2}$

$$
\left.\begin{array}{l}
\mathrm{R}^{2}=\frac{\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} \\
r_{y, \hat{y}}^{2}=\frac{\left(\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(\hat{y}_{i}-\overline{\hat{y}}\right)\right)^{2}}{\left(\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}\right)\left(\sum_{i=1}^{n}\left(\hat{y}_{i}-\overline{\hat{y}}\right)^{2}\right)}
\end{array}\right\} r_{y, \hat{y}}^{2}=\frac{\left(\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(\hat{y}_{i}-\bar{y}\right)\right)^{2}}{\left(\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}\right)\left(\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}\right)}
$$

Appendix: $\mathrm{R}^{2}=r_{y, \hat{y}}^{2}$

$$
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(\hat{y}_{i}-\bar{y}\right)=\sum_{i=1}^{n} y_{i}\left(\hat{y}_{i}-\bar{y}\right)
$$

$$
=\sum_{i=1}^{n}\left(\hat{y}_{i}+\hat{u}_{i}\right)\left(\hat{y}_{i}-\bar{y}\right)
$$

$$
=\sum_{i=1}^{n} \hat{y}_{i}\left(\hat{y}_{i}-\bar{y}\right)+\sum_{i=1}^{n} \hat{u}_{i}\left(\hat{y}_{i}-\bar{y}\right)
$$

$$
=\sum_{i=1}^{n} \hat{y}_{i}\left(\hat{y}_{i}-\bar{y}\right)+\underbrace{\sum_{i=1}^{n} \hat{i}_{i} \hat{y}_{i}-\bar{y}}_{=0} \underbrace{\sum_{i=0}^{n}}_{\sum_{i=0}^{i=1}}
$$

$$
=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)\left(\hat{y}_{i}-\bar{y}\right)=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}
$$

Appendix: $\mathrm{R}^{2}=r_{y, \hat{y}}^{2}$

$$
\begin{aligned}
\mathrm{R}^{2} & =\frac{\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}= \\
& =\frac{\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} \cdot \frac{\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}}=\frac{\left(\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(\hat{y}_{i}-\bar{y}\right)\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} \sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}}=r r_{i, \bar{y}}^{2}
\end{aligned}
$$

Nothing in this derivation depends on k.

Consider the normal equation for x_{1}

$$
\sum_{i=1}^{n} x_{i 1} \underbrace{\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i 1}-\hat{\beta}_{2} x_{i 2}\right)}_{u_{i}}=0
$$

Regressing x_{1} on x_{2} we can write

$$
x_{1}=\hat{x}_{1}+\hat{r}_{1}=\hat{\gamma}_{0}+\hat{\gamma}_{2} x_{2}+\hat{r}_{1} \Rightarrow\left\{\begin{array}{l}
\sum_{i=1}^{n} \hat{r}_{i 1}=0 \\
\sum_{i=1}^{n} x_{i 2} \hat{r}_{i 1}=0
\end{array} \Rightarrow \sum_{i=1}^{n} \hat{x}_{i 1} \hat{r}_{i 1}=0\right.
$$

since $\sum_{i=1}^{n} \hat{x}_{i 1} \hat{u}_{i}=\sum_{i=1}^{n}\left(\hat{\gamma}_{0}+\hat{\gamma}_{2} x_{i 2}\right) \hat{u}_{i}=\hat{\gamma}_{0} \underbrace{\sum_{i=1}^{n}}_{=0} \hat{u}_{i}+\hat{\gamma}_{2} \underbrace{\sum_{i=1}^{n} x_{i 2} \hat{u}_{i}}_{=0}=0$
by the algebraic properties of the OLS.

Appendix: $\hat{\beta}_{1}=\frac{\sum_{i n}^{n}}{\sum_{i=1}^{n} r_{i n}^{2}}$
2. $\sum_{i=1}^{n} \hat{r}_{1}\left(y_{1}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{1}-\hat{\beta}_{2} x_{2}\right)=$

$$
=\sum_{i=1}^{n} \hat{r}_{i 1} y_{i}-\hat{\beta}_{0} \underbrace{\sum_{i=1}^{n} \hat{r}_{i 1}}_{=0}-\hat{\beta}_{1} \sum_{i=1}^{n} \hat{r}_{i 1} x_{i 1}-\hat{\beta}_{2} \underbrace{\sum_{i=1}^{n} \hat{r}_{i 1} x_{i 2}}_{=0}
$$

$$
=\sum_{i=1}^{n} \hat{r}_{i 1} y_{i}-\hat{\beta}_{1} \sum_{i=1}^{n} \hat{r}_{i 1}\left(\hat{x}_{i 1}+\hat{r}_{i 1}\right)
$$

$$
=\sum_{i=1}^{n} \hat{r}_{i 1} y_{i}-\hat{\beta}_{1} \underbrace{\sum_{i=1}^{n} \hat{r}_{i 1} \hat{X}_{i 1}}_{=0}-\hat{\beta}_{1} \sum_{i=1}^{n} \hat{r}_{i 1}^{2}=0
$$

Appendix: $\hat{\beta}_{1}=\frac{\sum_{i=1}^{n} \hat{r}_{1} y_{i}}{\sum_{i=1}^{n} \hat{r}_{1 i}^{2}}$
Solving $\sum_{i=1}^{n} \hat{r}_{11} y_{i}-\hat{\beta}_{1} \sum_{i=1}^{n} \hat{r}_{i 1}^{2}=0$ we get the formula for $\hat{\beta}_{1}$.

Note that the argument can be generalized for general k. In this case \hat{r}_{1} are the residuals from the regression of x_{1} on $X_{2}, X_{3}, \ldots, X_{k}$.

Appendix: $\hat{\beta}_{1}=\frac{\sum_{i=1}^{n} \hat{r}_{11} y_{i}}{\sum_{i=1}^{n} \hat{r}_{i 1}^{2}}$
Of course we can proof this directly from the formula for $\hat{\beta}_{1}$ we got before.
From the theory of OLS we can write $\sum_{i=1}^{n} \hat{r}_{i 1}^{2}$ as

$$
\sum_{i=1}^{n} \hat{r}_{i 1}^{2}=\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)^{2}\left(1-r_{x, x_{2}}^{2}\right)
$$

Given the Sum of Squares Decomposition and since the R-squared in the regression of x_{1} on x_{2} is just $r_{x_{1}, x_{2}}^{2}$.

Substituting this into the formula for $\hat{\beta}_{1}$ we have

$$
\begin{aligned}
\hat{\beta}_{1} & =\frac{\sum_{i=1}^{n}\left(x_{11}-\bar{x}_{1}\right)\left(y_{i}-\bar{y}\right)-\frac{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)\left(x_{i 2}-\bar{x}_{2}\right)}{\sum_{i=1}^{n}\left(x_{i 2}-\bar{x}_{2}\right)^{2}}\left(\sum_{i=1}^{n}\left(x_{i 2}-\bar{x}_{2}\right)\left(y_{i}-\bar{y}\right)\right)}{\sum_{i=1}^{n} r_{11}^{2}} \\
& =\frac{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)\left(y_{i}-\bar{y}\right)-\hat{\gamma}_{2}\left(\sum_{i=1}^{n}\left(x_{i 2}-\bar{x}_{2}\right)\left(y_{i}-\bar{y}\right)\right)}{\sum_{i=1}^{n} r_{i 1}^{2}}
\end{aligned}
$$

$\sum^{\sum_{\text {fryy }}}$
Appendix: $\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}}{\sum_{n}}$
$\sum_{i=1}^{n} \hat{r}_{1}^{2}$

$$
\sum^{n}\left(X_{i 1}-\bar{X}_{1}\right)\left(X_{i 2}-\bar{X}_{2}\right)
$$

where $\hat{\gamma}_{2}=\frac{\sum_{i=1}\left(x^{n}\right.}{\sum^{n}\left(x_{2}-\bar{x}\right)^{2}}$, but

$$
\sum_{i=1}\left(x_{i 2}-\bar{x}_{2}\right)^{2}
$$

$$
\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)\left(y_{i}-\bar{y}\right)-\hat{\gamma}_{2}\left(\sum_{i=1}^{n}\left(x_{i 2}-\bar{x}_{2}\right)\left(y_{i}-\bar{y}\right)\right)=\sum_{i=1}^{n}\left(\left(x_{i 1}-\bar{x}_{1}\right)-\hat{\gamma}_{2}\left(x_{i 2}-\bar{x}_{2}\right)\right)\left(y_{i}-\bar{y}\right)
$$

$$
=\sum_{i=1}^{n}\left(\left(x_{11}-\bar{x}_{1}\right)-\hat{\gamma}_{2}\left(x_{12}-\bar{x}_{2}\right)\right) y_{i}
$$

$$
=\sum_{i=1}^{n}\left(x_{11}-\left(\bar{x}_{1}-\hat{\gamma}_{2} \overline{x_{2}}\right)-\hat{\gamma}_{2} x_{i 2}\right) y_{i}
$$

$$
=\sum_{i=1}^{n}\left(x_{11}-\hat{\gamma}_{0}-\hat{\gamma}_{2} x_{i 1}\right) y_{i}
$$

where $\hat{\gamma}_{0}=\bar{x}_{1}-\hat{\gamma}_{2} \bar{X}_{2}$, hence

$$
\begin{aligned}
\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)\left(y_{i}-\bar{y}\right)-\hat{\gamma}_{2}\left(\sum_{i=1}^{n}\left(x_{i 2}-\bar{x}_{2}\right)\left(y_{i}-\bar{y}\right)\right) & =\sum_{i=1}^{n} \underbrace{\left(x_{i 1}-\hat{\gamma}_{0}-\hat{\gamma}_{2} x_{i 2}\right)}_{\hat{r}_{11}} y_{i} \\
& =\sum_{i=1}^{n} \hat{r}_{i 1} y_{i}
\end{aligned}
$$

So eventually we get $\hat{\beta}_{1}=\frac{\sum_{i=1}^{n} \hat{r}_{11} y_{i}}{\sum_{i=1}^{n} \hat{r}_{11}^{2}}$

