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Multiple Regression Analysis

y = β0 + β1x1 + β2x2 + . . . + βkxk + u

3. Asymptotic Properties
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OLS: Finite sample properties
We have seen that in the MLR:

1. Under MLR.1 through MLR.5, OLS is 
BLUE: Efficient within the class of linear 
and unbiased estimators.

2. If we add MLR.6 (normality), then we can 
derive the exact sampling distributions of 
the OLS estimators (conditional on the x´s). 
This allows us to do inference by means of 
the t and F distribution. 
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OLS: Finite sample properties
This are called finite sample, small sample, 
or exact properties of the OLS estimators.
The name, finite sample, comes because 
they hold for any sample size, n.
Sometimes we are not able to proof such 
finite sample properties or we cannot obtain 
the exact sampling distributions of the 
estimators, so the inference should be only 
approximate.
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OLS: Asymptotic properties
Asymptotic properties or large sample properties
of estimators and test statistics are not defined for a 
particular sample size; rather, they are defined as the 
sample size grows without bound, as n→∞.
Under our assumptions, OLS has satisfactory large 
sample properties.
One practically important finding is that even 
without normality, MLR.6, t and F statistics have 
approximately t and F distributions, at least in large 
samples.
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Consistency
Unbiasedness of estimators is a finite sample 
property.
Unbiasedness, while important, cannot always 
be achieved.
In those cases, we switch attention to 
consistent estimators.
While not all useful estimators are unbiased, 
virtually all economists agree that consistency
is a minimum requirement for an estimator.
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Consistency
There are a few different ways to describe 
consistency, here we focus on an intuitive 
understanding.
Consistency means that as n→∞, the 
distribution of the estimator collapses to the 
parameter value.
This can be illustrated by the sample mean,    , 
as an estimator of the population mean, µ, 
given a random sample.

x
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Consistency of the sample mean
It is well known that if  xi ~ i.i.d.(µ,σ2), then

so the probability density function of    , 
whatever it is, is centered around µ with an 
standard deviation that decreases at the rate
Lets see the effect of increasing n.
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Consistency of the sample mean
( )f x

n σ
1         50

50 100 150 200

n = 1

0.08

0.04

0.02

0.06

Assume µ = 100 and σ = 50. Suppose that we do not know the population mean and we use the 
sample mean to estimate it. The probability density function of the sample mean will have the 
same expected value as x, but its standard deviation will be           . 50 n
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Consistency of the sample mean
( )f x
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The larger is the sample, the smaller will be the standard deviation of the sample mean.

If n = 1,  the sample consists of a single observation. x is the same as x and its standard deviation is 50.



Francisco J. Goerlich Introductory Econometrics 10

Consistency of the sample mean
( )f x

We will see how the shape of the distribution changes as the sample size increases.
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Consistency of the sample mean
( )f x

The distribution becomes more concentrated about the population mean.
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Consistency of the sample mean

To see what happens for n greater than 100, we will have to change the vertical scale.
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Consistency of the sample mean

We have reduced the vertical scale by a factor of 10.
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Consistency of the sample mean

The distribution continues to contract about the population mean.

( )f x
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Consistency of the sample mean
( )f x
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Consistency of the sample mean
In the limit, the variance of the distribution tends to zero. The 
distribution collapses to a spike at the true value.
The sample mean is therefore a consistent estimator of the 
population mean.
This illustrates the difference between the concepts of 
unbiasedness and consistency.
Unbiasedness is a finite-sample concept. The expected value 
of the sample mean is equal to the population mean, but in 
general its actual value will be different.
Consistency is a large-sample concept. A consistent estimator 
becomes an increasingly accurate estimator of the population 
characteristic and in the limit becomes equal to it.
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Consistency of the sample mean

As the sample size becomes large, the distribution of the sample
mean collapses to a spike located at the true value.
The sample mean is therefore consistent as well as unbiased.

Finite samples:  is an unbiased estimator of 

Large samples:  is a consistent estimator of 
plim 

x

x
x
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= µ
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Consistency
Consistency involves a thought experiment 
about what happen as the sample size gets 
large (while at the same time, we obtain 
numerous random samples for each sample 
size).
If obtaining more and more data does not 
generally get us closer to the parameter value 
of interest, then we are using a poor 
estimation procedure.



Francisco J. Goerlich Introductory Econometrics 19

Consistency of OLS.

THEOREM 5.1 CONSISTENCY OF OLS

Under assumptions MLR.1 through MLR.4, 
the OLS estimator      is consistent for     ,
for all                      .

PROOF: A general proof requires matrix 
algebra, see Appendices D & E.

ˆ
jβ

0,1,2,...,j k=
jβ
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Consistency of OLS.
We can however prove consistency of the 
slope estimator in the SLR model.

We need to take plim´s to establish 
consistency.
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Law of Large Numbers

LAW OF LARGE NUMBERS:
Let            a random sample with mean µ, 
then

In other words, sample moments converge 
to population moments.

{ } 1

n
i i

x
=

plim x = µ
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Properties of plim´s
PROPERTY PLIM.1:
Assume Wn is a consistent estimator for θ, plim (Wn) = θ.
Then

plim g(Wn) = g(plim Wn)
for a continuous function g(•).

PROPERTY PLIM.2:
If plim (Tn) = α and plim (Un) = β
(i)    plim (Tn + Un) = α + β
(ii)   plim (Tn.Un) = αβ
(iii)  plim (Tn/Un) = α/β,  provided β ≠ 0.
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Consistency of OLS.
We can apply the law of large numbers to the 
numerator and denominator, which converge in 
probability to the population quantities, Cov (x,u) 
and Var (x) respectively.
Provided Var (x) ≠ 0, which is assumed in MLR.4, 
we can use the properties of the probability limits to 
get

using E(u|x) = 0, SLR 3.

1 1 1
( , )ˆplim ,  since ( , ) 0
( )

Cov x u Cov x u
Var x

β = β + = β =
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Consistency of OLS.
The previous arguments show that OLS is 
consistent in the SLR if we assume only zero 
correlation between u and x.
This is also true in the general case, so 
assumption MLR.3 can be weakened.
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Assumptions

MLR.3´: ZERO MEAN AND ZERO CORRELATION

E(u) = 0  and  Cov(xj,u) = 0, for j = 1,2,…,k

For a random sample, this assumption implies 
that

E(ui) = 0  and  Cov(xij,ui) = 0,
for j = 1,2,…,k   and i = 1,2,3,…,n
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Consistency of OLS.
Assumption MLR.3 implies MLR.3´, but not 
vice versa.
Interestingly, while OLS is unbiased under 
MLR.3, this is not the case under Assumption 
MLR.3´.
This implies that estimators that are biased in 
finite samples can be consistent.
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Inconsistencies in OLS
Just as failure of E(u|x1,x2,…,xk) = 0 causes bias in 
the OLS estimators, correlation between u and any
of x1, x2,…,xk generally causes all of the OLS 
estimators to be inconsistent.
This simple but important observation is often 
summarized as: if the error is correlated with any 
of the independent variables, then OLS is biased 
and inconsistent.
This is very unfortunate because it means that any 
bias persist as the sample size grows.
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Deriving an Inconsistency
Consider the asymptotic analog of the 
omitted variable bias.
Population:

y = β0 + β1x1 + β2x2 + u
Estimated model:

0 1 1y x= β + β
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Deriving an Inconsistency
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Thus, for practical purposes, we can view the 
inconsistency as being the same as the bias.
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Inconsistencies in OLS
An important point about inconsistency in 
OLS estimators is that, by definition, the 
problem does not go away by adding more 
observations to the sample.
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Asymptotic normality
Consistency of an estimator is an important property, 
but it alone does not allow us to perform statistical 
inference.
Simply knowing that the estimator is getting closer 
to the population value as the sample size grows 
does not allow us to test hypothesis about the 
parameters.
For testing, we need the sampling distribution of the 
OLS estimators.
The exact normality of OLS estimators hinges 
crucially on the normality of the distribution of u in 
the population.
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Asymptotic normality
If the errors u1, u2,…,un are random draws from 
some distribution other than the normal, the     will 
not be normally distributed, which means that the t
statistics will not have t distributions and the F
statistics will not have F distributions.
This is a potentially serious problem because our 
inference hinges on being able to obtain critical 
values or p-values from the t of F distributions.
We know that normality plays no role in the BLUE 
property of OLS under the Gauss-Markov 
assumptions. But exact inference requires MLR.6.

ˆ
jβ
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Asymptotic normality
The question is: Can we perform inference 
without MLR.6?
YES. Even though the u, o alternatively y 
conditional on x´s, are not from a normal 
distribution, we can use the central limit 
theorem to conclude that the OLS estimators 
satisfy asymptotic normality, which means 
they are approximately normally distributed 
in large enough samples sizes.
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Central Limit Theorem

CENTRAL LIMIT THEOREM:
Let            a random sample with mean µ and 
variance σ2, then

In other words, standardized averages 
converge to the standard normal distribution.
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Asymptotic Normality of OLS.
THEOREM 5.2 ASYMPTOTIC NORMALITY OF OLS

Under the Gauss-Markov assumptions MLR.1 
through MLR.5,

(i)                                 , where            is the asymptotic

variance of                  ; for the slope coefficients,

, where the     are the residuals from

regressing xj on the other independent variables. We 
say that      is asymptotically normally distributed.
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Asymptotic Normality of OLS.
(ii)      is a consistent estimator of                  ;

(iii) For each j,

where             is the usual OLS standard error.

2σ̂ 2 ( )Var uσ =

ˆ
~ (0,1)ˆ( )

a
j j

j

N
se
β − β

β

ˆ( )jse β
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Asymptotic Normality of OLS.
Theorem 5.2 is useful because the normality 
assumption MLR.6 has been dropped; the only 
restriction on the distribution of the error is that it 
has finite variance, something we will always 
assume. We have also assumed zero conditional 
mean and homoskedasticity of u.
Note that the distribution that appears in Theorem 
5.2 is the normal not the tn−k−1 as in Theorem 4.2. 
However from a practical perspective, this 
difference is irrelevant and we can write
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Asymptotic Normality of OLS.

since tn−k−1 approaches the standard normal 
distribution as the df gets large.
This result tell us that t testing and the 
construction of confidence intervals are 
carried out exactly as under the CLM 
assumptions.
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Asymptotic Normality of OLS.
If n is not very large, then the t distribution can be a 
poor approximation to the normal when u is not 
normally distributed.
Unfortunately, there are no general prescriptions on 
how big n must be before the approximation is good 
enough.
Theorem 5.2 requires homoskedasticity. If Var(y|x) is 
not constant, the usual t statistics and confidence 
intervals are invalid, no matter how large n is.
From Theorem 5.2                   , this implies 2 2ˆplim σ = σ ˆplim σ = σ
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Asymptotic Normality of OLS.
Since the estimated variance of     is

appears in the standard error for each    ,

when u is not normal this is usually called 
asymptotic standard error.
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Asymptotic Normality of OLS.
It can be shown that

where cj is a positive constant that does not 
depend on n.
This is a useful rule of thumb: standard errors 
can be expected to shrink at a rate that is the 
inverse of the square root of the sample size.

ˆ( ) j
j

cse
n

β ≈
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Asymptotic Normality of OLS.
The asymptotic normality of the OLS 
estimators also implies that the F statistics 
have approximate F distributions in large 
sample sizes.
Thus, for testing exclusion restrictions or 
other multiple hypothesis, nothing changes 
from what we have done before.
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Asymptotic Efficiency of OLS
We know that, under Gauss-Markov 
assumptions, the OLS estimators are BLUE.
It can be shown that OLS is also 
asymptotically efficient within the class of 
the consistent and asymptotically normal 
estimators.
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Asymptotic Efficiency of OLS
THEOREM 5.3 ASYMPTOTIC EFFICIENCY OF OLS

Under the Gauss-Markov assumptions, let      denote 
the class of estimators that are consistent and 
asymptotically normal and let       denote the OLS 
estimators. Then for                     , the OLS 
estimators have the smallest asymptotic variances:

PROOF: A general proof requires matrix algebra and 
advance asymptotic analysis.

jβ

ˆ
jβ

0,1,2,...,j k=

( ) ( )ˆ
j j j jAVar n AVar nβ − β ≤ β − β
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