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The Simple Regression Model

y = β0 + β1x + u
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Simple Regression Model
In writing down a model that “explains y in 
terms of x”, we must confront three issues:

1. Since there is never an exact relationship 
between variables, how do we allow for other 
factors to affect y?

2. What is the functional relationship between y
and x?

3. How can we be sure we are capturing a “ceteris 
paribus” relationship between y and x (if that is 
the desired goal)?



Francisco J. Goerlich Introductory Econometrics 3

Definition

The Simple Linear Regression (SLR) model 
resolve these ambiguities by writing down 
the simple equation

y = β0 + β1x + u

This is a population model.
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Some Terminology

In the simple linear regression model, 
where y = β0 + β1x + u,  we typically refer 
to y as the

Dependent Variable, or
Left-Hand Side Variable, or
Explained Variable, or
Regressand
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Some Terminology, cont.

In the simple linear regression of y on x, we 
typically refer to x as the

Independent Variable, or
Right-Hand Side Variable, or
Explanatory Variable, or
Regressor, or
Covariate, or
Control Variables
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Some Terminology, cont.

In the simple linear regression of y on x, we 
typically refer to u as the

Error Term, or
Disturbance

The variable u represents factors other than 
x that affect y.
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Some Terminology, cont.

In the simple linear regression of y on x, β0 
and β1 are unknown parameters of interest 
to be estimated from a given sample.
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Linear Regression Model

If the other factors in u are held fixed, so 
that the change in u is zero, ∆u = 0, then x
has a linear effect on y:

∆y = β1∆x if   ∆u = 0

This means that β1 is the slope parameter in 
the relationship between y and x, holding 
the other factors in u fixed.
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Linear Regression Model

The linearity of y = β0 + β1x + u implies that 
a one-unit change in x has the same effect on 
y, regardless of the initial value of x.

Given that u is an unobserved random 
variable, we need an assumption about how 
x and u are related, otherwise we can’t do 
any progress.
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A Simple (non restrictive) Assumption

The average value of u, the error term, in the 
population is 0.  That is,

E(u) = 0

This is not a restrictive assumption, since we 
can always use β0 to normalize E(u) to 0. (If 
you don’t believe me try Problem 2.2)
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Key Assumption:
Zero Conditional Mean 

We need to make a crucial assumption about 
how u and x are related.
We want it to be the case that knowing 
something about x does not give us any 
information about u, so that they are 
completely unrelated.  That is, that:

E(u|x) = E(u) = 0, which implies
E(y|x) = β0 + β1x
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Key Assumption:
Zero Conditional Mean 

Hence the crucial assumption is that the 
average value of u does not depend on the 
value of x:

E(u|x) = E(u) = 0
where the second equality follows from 
above and is not restrictive as long as we 
include an intercept, β0, in the equation.
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Key Assumption:
Zero Conditional Mean 

The equation
E(y|x) = β0 + β1x

is known as the population regression 
function (PRF), E(y|x), is a linear function of 
x.
The linearity means that a one-unit increase 
in x changes the expected value of y by the 
amount β1.
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.
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E(y|x) as a linear function of x, where for any x
the distribution of y is centered about E(y|x)

E(y|x) = β0 + β1x
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Ordinary Least Squares

Basic idea of regression is to estimate the 
population parameters, (β0 , β1), from a 
sample.
Let {(yi ,xi): i = 1,…,n} denote a random 
sample of size n from the population.
For each observation in this sample, it will 
be the case that

yi = β0 + β1xi + ui
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Population regression line, sample data points
and the associated error terms
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Deriving OLS Estimates
To derive the OLS estimates we need to 
realize that our main assumption of
E(u|x) = E(u) = 0 also implies that

Cov(x,u) = E(xu) = 0

Why? Remember from basic probability 
that Cov(X,Y) = E(XY) – E(X)E(Y)
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Deriving OLS continued
These, E(u) = 0 and E(xu) = 0, are two 
population restrictions we can write just in 
terms of x, y, β0 and β1 , since u = y – β0 – β1x

E(y – β0 – β1x) = 0
E[x(y – β0 – β1x)] = 0

These are called moment restrictions
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Deriving OLS using MOM.
The method of moments approach to 
estimation implies imposing the population 
moment restrictions on the sample 
moments.

What does this mean?  Recall that for E(X), 
the mean of a population distribution, a 
sample estimator of E(X) is simply the 
arithmetic mean of the sample.
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More on the Derivation of OLS
We want to choose values of the parameters that 
will ensure that the sample versions of our moment 
restrictions are true.
The sample versions are as follows:
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More on the Derivation of OLS

Given the definition of a sample mean, and 
properties of summation, we can rewrite the first 
condition as follows

0 1

0 1

ˆ ˆ ,
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ˆ ˆ

y x

y x

= β + β

β = − β
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More on the Derivation of OLS
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So the OLS estimated slope is
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Summary of OLS slope estimate

The slope estimator is the sample 
covariance between x and y divided by the 
sample variance of x.
If x and y are positively correlated, the 
slope will be positive.
If x and y are negatively correlated, the 
slope will be negative.
We only need x to vary in our sample.
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More on the OLS estimates
Given the OLS estimates,      and     , the 
fitted value for y when x = xi is given by

This is the OLS regression line or Sample 
Regression Function (SRF). The value that 
the model predicts for y when x = xi.
There is a fitted value for each observation in 
the sample.

0β̂ 1β̂

0 1
ˆ ˆˆi iy x= β + β
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More on the OLS estimates
The SRF is the sample counterpart of the 
PRF.
It is important to remember that the PRF, 
E(y|x) = β0 + β1x, is something fixed, but 
unknown, in the population. Since the SRF is 
obtained for a given sample of data, a new 
sample will generate different estimates.
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More on the OLS estimates
The residual for observation i is the 
difference between the actual yi and its fitted 
value,    ,

Again there are n residuals.
The residual, û, is an estimate of the error 
term, u, and is the difference between the 
fitted line (SRF) and the sample point.

0 1
ˆ ˆˆ ˆi i i i iu y y y x= − = − β − β

ˆiy
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Sample regression line, sample data points
and the associated estimated error terms
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More on the OLS estimates
In most cases the slope estimate,    , is of 
primary interest. This can be written as

It tell us the amount by which    changes when 
x increases by one unit. Equivalently,

Given a change in x, we can compute the 
predicted change in y.
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OLS: Alternate approach
These are called Ordinary Least Square
(OLS) estimates, but we have derived them 
from two moment conditions. Where does 
the OLS term come from?
Intuitively, OLS is fitting a line through the 
sample points such that the sum of squared 
residuals is as small as possible, hence the 
term least squares
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OLS: Alternate approach
Consider b0 and b1 two estimators of the 
population parameters β0 and β1 (OLS or 
any other estimators). The residual for 
observation i, given these estimators, is

ei = yi – b0 – b1xi



Francisco J. Goerlich Introductory Econometrics 32

OLS: Alternate approach
Given the intuitive idea of fitting a line, we 
can set up a formal minimization problem.
It can be shown that OLS solves the 
following optimization problem:
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OLS: Alternate approach
If one uses calculus to solve the minimization 
problem for the two parameters you obtain the 
following first order conditions, which are the 
same as we obtained before multiplied by −2n, 
and, therefore, are solved for the same values,
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OLS: Alternate approach
The above equations are called normal 
equations.
See Appendix 2A for a formal proof that the 
solution of this system of two equations in 
two unknowns gives us a minimum of the 
objective function.
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OLS: Alternate approach
Why not to minimize some other function of 
the residuals, such as the absolute values of 
the residuals?.
Mainly two reasons:

1. Some functions are meaningless, e.g. sum of 
residuals.

2. Other functions, e.g. sum of the absolute values of 
residuals, are more difficult to handle.
OLS is simple and has good properties.
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Algebraic Properties of OLS 
By definition, each fitted value     is on the 
OLS regression line. The OLS residual 
associated with observation i, ûi, is the 
difference between yi and its fitted value.
If ûi is positive, the regression line 
underpredicts yi; if ûi is negative, the 
regression line overpredicts yi.
The ideal case for observation i is ûi = 0, but 
usually none of the data points will lie on the 
OLS regression line.

ˆiy
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Algebraic Properties of OLS 

The sum of the OLS residuals is zero.
Thus, the sample average of the OLS 
residuals is zero as well.
The sample covariance between the 
regressor and the OLS residuals is zero.
The OLS regression line always goes 
through the mean of the sample.



Francisco J. Goerlich Introductory Econometrics 38

Algebraic Properties (precise)
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Algebraic Properties (precise)
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Algebraic Properties
Thinking of each observation as being made 
up of an explained part, and an unexplained 
part,                   , we can view OLS as 
decomposing each yi into two parts, a fitted 
value and a residual. The fitted values and 
residuals are uncorrelated in the sample.

ˆ ˆi i iy y u= +
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Sum of Squares Decomposition
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Define:
1. Total Sum of Squares (SST)

2. Explained Sum of Squares (SSE)

3. Residual Sum of Squares (SSR)
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Sum of Squares Decomposition
SST is a measure of the total sample variation 
in the yi.
It can be shown that total variation in y, SST, 
can always be expressed as the sum of the 
explained variation, SSE, and the unexplained 
variation, SSR. Thus

SST = SSE + SSR
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Proof that SST = SSE + SSR
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Given the above properties, so SST = SSE + SSR
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Goodness-of-Fit
How do we think about how well our sample 
regression line fits our sample data?

We can compute the fraction of the total sum 
of squares (SST) that is explained by the 
model (SSE), call this the R-squared, R2, of 
regression:

R2 = SSE/SST = 1 – SSR/SST
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Goodness-of-Fit
100.R2 is the percentage of the sample 
variation in y that is explained by x (the 
model).
R2 ∈ [0,1]
If R2 = 1, then we have a perfect fit, ûi = 0 for 
all observations.
If R2 = 0, or close to zero, then we have a 
poor fit: very little variation in y is explained 
by x.
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Goodness-of-Fit
It can be shown that R2 is equal to:

1. The square of the sample correlation 
coefficient between yi and    .

2. The square of the sample correlation 
coefficient between yi and xi.

Please show this as an exercise!.

ˆiy
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Goodness-of-Fit
Because we want high explanatory power for our 
models, we look, other things equal, for high R2 in 
our regressions.
However, in the social sciences, low R2 in 
regression equations are not uncommon, especially 
for cross-section analysis.
It is worth emphasizing now that a seemingly low 
R2 does not necessarily mean that an OLS 
regression equation is useless.
Goodness of fit is not the only feature we look for 
in a regression equation.
More on this in the multiple regression analysis.
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Using software for OLS regressions
Now that we have derived the formula for 
calculating the OLS estimates of our 
parameters given a sample, you will be 
happy to know you don’t have to compute 
them by hand.

Regression packages, like Eviews, TSP, 
RATS, Stata …, will do the job for you.
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Units of Measurement and 
Functional Form

Two important issues in applied economics 
are:

1. Understanding how changing the units of 
measurement of the dependent and/or 
independent variables affects OLS estimates, 
and

2. Knowing how to incorporate popular 
functional forms used in economics into 
regression analysis.
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Units of Measurement
If x is multiplied/divided by a constant, c ≠ 0, 
then the OLS slope is divided/multiplied by 
the same constant, c.
Changing the units of measurement of x only 
does not affect the intercept.

If y is multiplied/divided by a constant, c ≠ 0, 
then the OLS slope and intercept are both 
multiplied/divided by the same constant, c.
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Changing the Origin
If add a constant d to x and/or y then the OLS 
slope is not affected.
However changing the origin of either x 
and/or y affects the intercept of the regression.

Eventually note that the goodness of fit, R2, is 
invariant to changes in the units of x and/or y, 
and also to the origin of the variables.

Try exercise 2.9 to practice this!
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Functional Form
Linear relationships are not general enough 
for all economic applications. However, we 
can incorporate many nonlinearities (in 
variables) into simple regression analysis by 
appropriately redefining the dependent and 
independent variables.
Example,    y = β0 + β1x2 + u

We consider some possibilities that often 
appear in applied work.
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Proportions and Percentages
Remember that:

1. Proportional change:

2. Percentage change:

3. Elasticity:
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Proportions and Percentages
4. Changes in logarithms:

Hence,

1 0
1 0

0 0
log( ) log( ) log( ) x x xx x x

x x
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∆ = − ≈ =

100. log( ) %.x x∆ ≈ ∆
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A Linear Model for log(y)
Consider the model

log(y) = β0 + β1x + u
What is the meaning of β1 in this model?
If ∆u = 0, then x has a linear effect on log(y):

∆log(y) = β1∆x
or,

%∆y = (100.β1).∆x
i.e. 100.β1 is the percentage change in y by 
unit of x.
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A Constant Elasticity Model
Consider the model

log(y) = β0 + β1log(x) + u
What is the meaning of β1 in this model?
If ∆u = 0, then log(x) has a linear effect on 
log(y):
∆log(y) = β1∆log(x)   ⇔ %∆y = β1.%∆x

i.e. β1 is the elasticity of y with respect to x.
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Functional Forms Involving logs

Model
Dependent
Variable

Independent
Variable

Interpretation
of β1

level-level y x ∆y = β1.∆x

level-log y log(x) ∆y = (β1/100).%∆x

log-level log(y) x %∆y = (100.β1).∆x

log-log log(y) log(x) %∆y = β1.%∆x
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Functional Form
Important: While the mechanics of simple 
regression does not depend on how y and x
are defined, the interpretation of the 
coefficients does depend on their definitions.
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The Meaning of “Linear” Regression
We have claimed that our regression model, 
y = β0 + β1x + u, is linear. This is true in two 
senses:

1. It is linear in the variables involved, y and x. 
And we have just seen how this can be 
relaxed to some extend.

2. It is linear in a more fundamental sense. The 
key of “linearity” is that it is linear in the 
parameters, β0 and β1, and u is additive.
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The Meaning of “Linear” Regression
For OLS to be applied as an estimation method to a 
given model, this should be linear in parameters.
Plenty of models cannot be cast as linear regression 
models because they are not linear in parameters.
i.e. 

Estimation of such models takes us into the topic 
of nonlinear regression.

1
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0 1

1 or xy u y e u
x

β= + = β +
β + β
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Statistical Properties of OLS
We defined de population model
y = β0 + β1x + u, and we claimed that the key 
assumption for the simple regression analysis 
to be useful is that E(u|x) = 0.
We now return to the population model and 
study the statistical properties of OLS 
estimators,     and    , considered as estimators 
of the population parameters, β0 and β1.

0β̂ 1β̂
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Assumptions

SLR.1: LINEAR IN PARAMETERS

The population model is linear in parameters 
and given by

y = β0 + β1x + u
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Assumptions

SLR.2: RANDOM SAMPLING

We have a random sample from of size n, 
{(yi,xi): i = 1,2,3,…,n}, from the population 
model.
Thus we can write the population model in 
terms of the sample,

yi = β0 + β1xi + ui ,  i = 1,2,3,…,n
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Assumptions

SLR.3: ZERO CONDITIONAL MEAN

E(u|x) = 0

For a random sample, this assumption implies 
that

E(ui|xi) = 0 ,   i = 1,2,3,…,n

NOTE: Derivations will be conditional on the sample values, x’s.
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Assumptions

SLR.4: SAMPLE VARIATION IN THE
INDEPENDENT VARIABLE

The independent variables xi, i = 1,2,3,…,n, 
are not all equal to the same constant.

This requires some variation in the 
population.
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Unbiasedness of OLS
We focus on the slope parameter, β1.
In order to think about unbiasedness, we need to 
rewrite our estimator in terms of the population 
parameter.
Start with a simple rewrite of the OLS formula as
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Unbiasedness of OLS
Substituting yi = β0 + β1x + u
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The estimator equals the population slope, β1, plus a term 
that is a linear combination in the errors, {u1,…,un}.



Francisco J. Goerlich Introductory Econometrics 68

Unbiasedness of OLS
Remember that
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Taking expectations, conditionally on the x’s, we 
can prove the first important statistical property of 
OLS.
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Unbiasedness of OLS
THEOREM 2.1 UNBIASEDNESS OF OLS

Under assumptions SLR.1 to SLR.4

PROOF:
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Unbiasedness Summary
The OLS estimates of β0 and β1 are unbiased.
The proof of unbiasedness depends on our 4 
assumptions – if any assumption fails, then 
OLS is not necessarily unbiased.
Remember unbiasedness is a description of 
the estimator – in a given sample we may be 
“near” or “far” from the true parameter, but 
its distribution will be centered at the 
population parameter.
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Variance of the OLS Estimators
Now we know that the sampling 
distribution of our estimator is centered 
around the true parameter.
How spread out this distribution is? This 
will be a measure of uncertainty.
It is much easier to think about this 
variance under an additional assumption.
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Assumptions

SLR.5: HOMOSKEDASTICITY

Var(u|x) = σ2
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Variance of the OLS Estimators
The homoskedasticity assumption is quite 
distinct from the zero conditional mean 
assumption, E(u|x) = 0. SLR.3 involves the 
expected value of u, while SLR.5 concerns 
the variance of u.
Homoskedasticity plays no role in showing 
that     and    are unbiased.
We add SLR.5 because it simplifies the 
variance calculations and because it implies 
that OLS has certain efficiency properties.

0β̂ 1β̂
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Variance of the OLS Estimators
Var(u|x) = σ2 = E(u2|x) − [E(u|x)]2

E(u|x) = 0, so σ2 = E(u2|x) = E(u2) = Var(u)
Thus σ2 is also the unconditional variance, 
called the error variance.
σ, the square root of the error variance, is 
called the standard deviation of the error.
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Variance of the OLS Estimators
We can say:

E(y|x) = β0 + β1x and   Var(y|x) = σ2.
So, the conditional expectation of y given x is 
linear in x, but the variance of y given x is 
constant.
When Var(u|x) depends on x, the error term is 
said to exhibit heteroskedasticity. Since 
Var(u|x) = Var(y|x), heteroskedasticity is 
present whenever Var(y|x) is a function of x.
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Homoskedastic Case

.
.

E(y|x) = β0 + β1x

y

f(y|x)

x1 x2
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Heteroskedastic Case

.
xx1 x2

y

x3

. .
E(y|x) = β0 + β1x

f(y|x)
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Variance of OLS estimators
THEOREM 2.2 SAMPLING VARIANCES OF

OLS ESTIMATORS
Under assumptions SLR.1 to SLR.5

where these are conditional on the sample values 
{x1,…,xn}
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Variance of OLS estimators
PROOF:
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Variance of OLS: Summary
The larger the error variance, σ2, the larger 
the variance of the slope estimate.
The larger the variability in the xi’s, the 
smaller the variance of the slope estimate.
As a result, a larger sample size should 
decrease the variance of the slope estimate.
Problem: the error variance, σ2, is unknown. 
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Estimating the Error Variance
We don’t know what the error variance, σ2, 
is, and we cannot estimate it from the errors, 
ui, because we don’t observe the errors.
σ2 = E(u2), so an unbiased “estimator” would 
be               .
Unfortunately, this is not a true estimator, 
because we don’t observe the errors ui. But, 
we do have estimates of the ui, namely the 
OLS residuals ûi.

1 2
1

n
i in u−
=Σ
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Estimating the Error Variance
The relation between errors and residuals is 
given by

Hence ûi is not the same as ui, although the 
difference between them does have an 
expected value of zero.

( ) ( )
0 1 0 1

0 0 1 1

ˆ ˆˆ ˆ
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i i i i i i

i i

u y y x u x

u x

= − = β + β + − β − β

= − β − β − β − β
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Estimating the Error Variance
If we replace the errors with the OLS 
residuals, we have
This is a true estimator, because it gives a 
computable rule for any sample of the data, x
and y.
However, this estimator is biased, essentially 
because it does not account for two 
restrictions that must be satisfied by the OLS 
residuals, 

1 2
1 ˆ SSRn

i in u n−
=Σ =

1 1
1 1ˆ ˆ0 and 0n n

i i i i in u n x u− −
= =Σ = Σ =
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Estimating the Error Variance
One way to view these restrictions is this: If 
we know n – 2 of the residuals, we can get 
the other two residuals by using the 
restrictions implied by the moment 
conditions.
Thus, there are only n – 2 degrees of freedom 
in the OLS residuals, as opposed to n degrees 
of freedom in the errors.
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Estimating the Error Variance
The unbiased estimator of σ2 that we will use 
makes a degrees of freedom adjustment:

2
12 ˆ SSRˆ

2 2

n
i iu

n n
=Σ

σ = =
− −

THEOREM 2.3 UNBIASED ESTIMATOR OF σ2

Under assumptions SLR.1 to SLR.5
2 2ˆ( )E σ = σ
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Estimating the Error Variance
If      is plugged into the variance formulas we 
then have unbiased estimators of              and 

The natural estimator of σ is               and is 
called the standard error of the regression.
Since                             , its natural estimator 
is

1
ˆ( )Var β

2σ̂

0
ˆ( )Var β

2ˆ ˆσ = σ

1
ˆ( ) xsd SSTβ = σ

( )
1

2
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se
x x

1i=

σ
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Estimating the Error Variance
Note that           , the standard error of     , is 
view as a random variable when we think of 
running OLS over different samples; this is 
because      varies with different samples.

The standard error of any estimate gives us an 
idea of how precise the estimator is.

1
ˆ( )se β

σ̂

1β̂
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Regression Through the Origin
If we force the regression line to pass through 
the point (0,0) we are constraining the 
intercept to be zero.
This is called a regression through the origin.
This is not done very often since, among 
other problems, when β0 ≠ 0, then the slope 
estimate will be biased.
Summary: always include an intercept in your 
regressions.
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Appendix: 2 2
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Appendix: 2 2
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Appendix: 2 2
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