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Multiple Regression Analysis

y = β0 + β1x1 + β2x2 + . . . + βkxk + u

2. Inference
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Assumptions of the Classical 
Linear Model (CLM)

Knowing the expected value and variance of 
the OLS estimators is useful for describing 
the location and precision of the OLS 
estimators.
However, in order to perform statistical 
inference, we need more than just the first 
two moments of        . We need to know the 
full sampling distribution of the        .  

ˆ 'sjβ
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Assumptions of the Classical 
Linear Model (CLM)

Even under the Gauss-Markov assumptions 
(MLR1-MLR5), the distribution of         can 
have virtually any shape.
In order to do classical hypothesis testing, we 
need to add another assumption, beyond the 
Gauss-Markov assumptions.
Assume that u is independent of x1, x2,…, xk
and u is normally distributed with zero mean 
and variance σ2: u ~ Normal(0,σ2).

ˆ 'sjβ
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Assumptions

MLR.6: NORMALITY

The error u is independent of x1, x2,…, xk and 
u is normally distributed with zero mean and 
variance σ2

u ~ Normal(0,σ2)

If we make MLR.6, then we are necessarily 
assuming MLR.3 and MLR.5
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CLM Assumptions
Assumptions MLR.1 through MLR.6 are 
called the classical linear model (CLM) 
assumptions.
It is best to think of the CLM assumptions as 
containing all the Gauss-Markov assumptions 
plus the assumption of a normally distributed 
error term.
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CLM Assumptions
Under CLM, OLS is not only BLUE, but is 
the minimum variance unbiased estimator.
This means that OLS has the smallest variance 
among all unbiased estimators; we no longer 
have to restrict our comparison to estimators 
that are linear in the yi.
We can summarize the population 
assumptions of CLM as follows

y|x ~ Normal(β0 + β1x1 +…+ βkxk ,σ2)
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Normality
The claim for normality is usually done on the 
basis of a Central Limit Theorem (CLT), but 
this is restrictive in some cases.
Normality cannot be assumed always.
In any application, whether normality of u can 
be assumed is really an empirical matter.
Often, using a transformation, i.e. taking 
log’s, yields a distribution that is closer to 
normal.
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.
.

The homoskedastic normal distribution with 
a single explanatory variable

E(y|x) = β0 + β1x

y

f(y|x)

Normal
distributions

x1 x2
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Normality
Normality is easy to handle from a 
mathematical point of view. 
Large samples will allow us to drop 
normality without affecting to much the 
results.
Normality of the error term translates into 
normal sampling distributions of the OLS 
estimators.
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Normality of OLS
THEOREM 4.1 NORMAL SAMPLING

DISTRIBUTIONS

Under the CLM assumptions, MLR.1 through 
MLR.6, conditional on the sample values of 
the independent variables,

where             was given in topic 3. Therefore,
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Normality of OLS
The proof of Theorem 4.1 is not difficult, and 
is based on the fact that       is a linear 
combination of the errors, that are 
independent normal variables, and the 
important fact that a linear combination of 
normal variables has a normal distribution 
(Appendix B).
Previously we showed that                   and 
derived       

ˆ
jβ

ˆ( )j jE β = β
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Normality of OLS
The conclusion of Theorem 4.1 can be 
strengthened.
In fact, any linear combination of the

is also normally distributed, and any subset 
of the         has a joint normal distribution.
In the next topic we shall show that 
normality holds as an approximation even 
without MLR.6.

0 1 2
ˆ ˆ ˆ ˆ, , ,..., kβ β β β

ˆ 'sjβ



Francisco J. Goerlich Introductory Econometrics 13

Hypothesis Testing: Fundamentals
Hypothesis testing entails making a decision, 
on the basis of sample data, whether to accept 
that certain restrictions are satisfied by the 
basic assumed model.
The restrictions we are going to test are 
known as the null hypothesis, denoted by H0.
We also define an alternative hypothesis, 
denoted by H1, which represents our 
conclusion if the experimental test indicates 
that H0 is false.
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Hypothesis Testing: Example
In the SLR, y = β0 + β1x + u, we may be 
interested in the hypothesis

H0: β1 = 1
versus

H1: β1 = 0
In order to conclude that H0 is false and that 
H1 is true, we must have evidence “beyond 
reasonable doubt” against H0.
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Hypothesis Testing: Example
Usually we are not so specific about H1, so 
this is generally stated as

H1: β1 < 1 (one side alternative)
or

H1: β1 ≠ 1 (two side alternative)

Important: We are testing hypothesis about 
the population parameters. We are not testing 
hypothesis about the estimates from a 
particular sample.
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Hypothesis Testing: Fundamentals
In hypothesis testing, we can make two 
kinds of mistakes.

1. First, we can reject H0 when it is in fact true. 
This is called Type I error.

2. Second, we can fail to reject H0 when it is 
actually false. This is called Type II error.
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Hypothesis Testing: Fundamentals
After we have made the decision of whether 
or not to reject H0, we have either decided 
correctly or we have committed an error. We 
shall never know with certainty whether an 
error was committed.
However, we can compute the probability of 
making either a Type I error or a Type II 
error.
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Hypothesis Testing: Fundamentals
Hypothesis testing rules are constructed to 
make the probability of committing a Type I 
error fairly small.
Generally, we define the significance level
(α) of a test as the probability of a Type I 
error. Symbolically

α = Pr(Reject H0 | H0)

Read as: “The probability of rejecting H0 
given that H0 is true.”
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Hypothesis Testing: Fundamentals
Classical hypothesis testing requires that we 
initially specify a significance level for the 
test. When we specify a value for α, we are 
essentially quantifying our tolerance for 
Type I error.
Common values for α are .10, .05 and .01.
If α = .05, then the researcher is willing to 
falsely reject H0 5% of the time, in order to 
detect deviations from H0.
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Hypothesis Testing: Fundamentals
Once we have chosen α, we would then like 
to minimize the probability of a Type II error, 
Pr(Fail to Reject H0 | H1)
Alternatively, we would like to maximize the 
power of a test against all relevant 
alternatives. The power of a test, π(β1), is

π(β1) = 1 – Pr(Fail to Reject H0 | β1) = Pr(Reject H0 | β1)
where β1 denotes the actual value of the 
parameter.
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Hypothesis Testing: Fundamentals
Naturally, we would like the power function 
to be 1 under H1 (a false null) and 0 under H0 
(a true null).
But this is not possible!.
It can be shown that there is a trade-off 
between both types of errors, so reducing 
Type I error increases Type II error.
Instead, we choose our tests to maximize the 
power for a given α.
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Hypothesis Testing: Fundamentals
In order to test a null hypothesis against an 
alternative, we need to choose a test statistic 
and a critical value.
The choices for the statistic and the critical 
value are based on convenience and on the 
desire to maximize power given a 
significance level for the test.
A test statistic, T, is some function of the 
random sample, so is itself a random variable.
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Hypothesis Testing: Fundamentals
When we compute the statistic for a 
particular sample, we obtain an outcome of 
the test statistic, say t.
In order to perform an statistical test we 
should know the distribution of T under the 
null hypothesis.
Given the test statistic and its distribution, we 
can define a rejection rule that determines 
when H0 is rejected in favor of H1.
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Hypothesis Testing: Fundamentals
In this course, all rejection rules are based on 
comparing the value of the test statistic, t, to a 
critical value, c.
The set of values of t that result in rejection 
of the null hypothesis are collectively known 
as the rejection region.
In order to determine the critical value, we 
must first decide on a significance level of 
the test, α.
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Hypothesis Testing: Fundamentals
Then, given α, the critical value associated 
with α is determined by the distribution of T, 
assuming that H0 is true.
We shall write this critical value as c, but it 
should be understood that c depends on α.
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Hypothesis Testing: CLM
We are now interested testing hypothesis 
about a single population parameter in the 
context of the CLM,

y = β0 + β1x1 + β2x2 + . . . + βkxk + u
Even if βj is unknown, we can hypothesize 
about the value of βj and then use statistical 
inference to test our hypothesis.
The main result we need is the next one.
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Hypothesis Testing: t test
THEOREM 4.2 t DISTRIBUTION FOR THE 
STANDARDIZED ESTIMATORS

Under the CLM assumptions MLR.1 through 
MLR.6,

where k + 1 is the number of unknown 
parameters in the population model (k slope 
parameters and the intercept, β0).
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Hypothesis Testing: t test
Theorem 4.2 is important in that it allows as 
to test hypothesis involving the βj.
Compare this result with Theorem 4.1. The t
distribution comes from the fact that the 
constant σ in            has been replaced with 
the random variable    .
Are the normal and t distributions very 
different?.

ˆ( )jsd β
σ̂



Francisco J. Goerlich Introductory Econometrics 29

Normal versus t distributions

0

0.1

0.2

0.3

0.4

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

normal
t, n = 10
t, n = 5

Generally not, they are very similar in shape. Both symmetric and centered around 
zero, but…
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Normal versus t distributions

normal
t, n = 10
t, n = 5

0

0.1

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

they are quite different at the tails. And these are the important parts of the 
distributions in hypothesis testing.
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Normal versus t distributions

normal
t, n = 10
t, n = 5

0

0.1

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6-1.96

The 2.5% tail of a normal distribution starts 1.96 standard deviations from its mean.
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Normal versus t distributions

normal
t, n = 10
t, n = 5

0

0.1

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6-2.33

The 2.5% tail of a t distribution with 10 degrees of freedom starts 2.33 standard 
deviations from its mean.
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Hypothesis Testing: t test
Consider the null hypothesis,

H0: βj = 0
Since βj measures the partial effect of xj on y, 
after controlling for all other independent 
variables, H0: βj = 0 means that, once x1, x2, 
…,xj −1, xj+1,…, xk have been accounted for, xj
has no effect on y.
This is called a significance test.
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Hypothesis Testing: t test
The statistic we use to test H0: βj = 0, against 
any alternative, is called “the” t statistic or 
“the” t ratio of     and is defined as

Why is this a good statistic to test this 
hypothesis?
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Hypothesis Testing: t test
Since                 ,     will have the same sign 
as    .
In order to test H0: βj = 0; first, it is natural to 
look at our unbiased estimator of βj,     .
In a given sample     will never be zero 
exactly, but a small value will indicate a true 
null, whereas a big value will indicate a false 
null.
The question is: How far is     from zero?

ˆ( ) 0jse β > ˆ jj
tβ
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Hypothesis Testing: t test
We must recognize that there is a sampling 
error in our estimate    , so the size of      must 
be weighted against its sampling error.
This is precisely what we do using     , since 
this statistic measures how many estimated 
standard deviations     is away from zero.

ˆ jj
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One-Sided Alternatives
In order to determine a rule for rejecting H0, 
we need to decide on the relevant alternative 
hypothesis.
First, consider a one-sided alternative of the 
form

H1: βj > 0
How should we choose a rejection rule?
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One-Sided Alternatives
First, decide on a significance level, α, or the 
probability of rejecting H0 when it is in fact 
true, i.e. α = .05.
While     has a t distribution under H0, so it has 
zero mean, under the alternative βj > 0, so the 
expected value of      is positive.
Thus we are looking for a “sufficiently large”
positive value of      in order to reject H0: βj = 0 
in favor of H1: βj > 0.

ˆ jj
tβ

ˆ jj
tβ

ˆ jj
tβ
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One-Sided Alternatives
Negative values of      provide no evidence in 
favor of H1: βj > 0.
The definition of a “sufficiently large”, with
α = .05, is the 95th percentile in a t
distribution with n – k – 1 degrees of freedom, 
say c.
Rejection rule: Reject H0: βj = 0 in favor of 
H1: βj > 0 at α = .05 if

ˆ jj
tβ

ˆ jj
t cβ >
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One-Sided Alternatives

0

null hypothesis: H0 : βj = 0

alternative hypothesis: H1 : βj > 0

reject H0do not reject H0

1.701

α = .05

Example of a rejection rule for 28 degrees of freedom.
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One-Sided Alternatives
By our choice of the critical value c, rejection 
of H0 will occur for 5% of all random samples 
when H0 is true.
This is an example of a one-tailed test.
In order to obtain c, we only need the 
significance level and the degrees of freedom.
You should note a pattern in the critical 
values of the t distribution: as α falls, c
increases.
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One-Sided Alternatives
null hypothesis: H0 : βj = 0

alternative hypothesis: H1 : βj > 0

reject H0

0

α = .05

do not reject H0

α = .01

1.701
Thus, if H0 is rejected at, say, the 1% level, then it is automatically rejected at the 5% level.
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t distribution
t Distribution: Critical values of t

Degrees of   
freedom     One-tailed test       5%      2.5%        1%       0.5%      0.1%   0.05%

1 6.314 12.706 31.821 63.657 318.31 636.62
2 2.920 4.303 6.965 9.925 22.327 31.598
3 2.353 3.182 4.541 5.841 10.214 12.924
4 2.132 2.776 3.747 4.604 7.173 8.610
5 2.015 2.571 3.365 4.032 5.893 6.869

… … … … … … …
… … … … … … …
18 1.734 2.101 2.552 2.878 3.610 3.922
19 1.729 2.093 2.539 2.861 3.579 3.883
20 1.725 2.086 2.528 2.845 3.552 3.850
… … … … … … …
… … … … … … …

120 1.658 1.980 2.358 2.617 3.160 3.373
∞ 1.645 1.960 2.326 2.576 3.090 3.291
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Normal versus t distributions
As the degrees of freedom (df) in the t
distribution gets large, the t distribution 
approaches the standard normal distribution.
As a practical rule for df larger than 120 we 
can take the critical values from the normal.
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One-Sided Alternatives
Consider the one sided alternative,

H1: βj < 0
The rejection rule is just the mirror image of 
the previous case. Now, the critical value 
comes from the left tail of the t distribution.
In practice, it is easiest to think of the 
rejection rule as: Reject H0: βj = 0 in favor 
of H1: βj < 0 at α = .05 if              , where c is 
the critical value for H1: βj > 0.

ˆ jj
t cβ < −
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One-Sided Alternatives
null hypothesis: H0 : βj = 0

alternative hypothesis: H1 : βj < 0

reject H0

0

α = .05

do not reject H0

-1.701
Example of a rejection rule for 28 degrees of freedom.
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One-Sided Alternatives
For simplicity, we always assume c is 
positive, since this is how critical values are 
reported in t tables, and so –c is a negative 
number.
To reject H0 against the alternative H1: βj < 0, 
we must get a negative t statistic. A positive t
ratio, no matter how large, provides no 
evidence in favor of H1: βj < 0.
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Two-Sided Alternatives
Consider now the null hypothesis

H0: βj = 0
against a two sided-alternative

H1: βj ≠ 0
Under H1, xj has a ceteris paribus effect on y 
without specifying whether the effect is 
positive or negative. This is the relevant 
alternative when the sign of βj is not well 
determined by theory or common sense.
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Two-Sided Alternatives
When the alternative is two-sided, we are 
interested in the absolute value of the t
statistic.
Rejection rule: Reject H0: βj = 0 in favor of 
H1: βj ≠ 0 at α = .05 if              , where |•| 
denotes absolute value and c is an 
appropriately chosen critical value.

ˆ jj
t cβ >
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Two-Sided Alternatives
Given α, for a two-tailed test, c is chosen to 
make the area in each tail of the t distribution 
equal to α/2.
Hence, for α = .05, c is chosen to make the 
area in each tail of the t distribution equal to 
0.025.
In other words, c is the 97.5th percentile in the 
t distribution with n – k – 1 df.
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Two-Sided Alternatives
null hypothesis: H0 : βj = 0

alternative hypothesis: H1 : βj ≠ 0

0

reject H0do not reject H0

α = .025

reject H0

α = .025

-2.408 2.408
Example of a rejection rule for 28 degrees of freedom and a two-sided alternatives.
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Two-Sided Alternatives
null hypothesis: H0 : βj = 0

alternative hypothesis: H1 : βj ≠ 0

0

reject H0do not reject H0

α = .025 α = .025

α = .005

reject H0

α = .005

-2.408 2.408
As before, if H0 is rejected at, say, the 1% level, then it is automatically rejected at the 5% 
level.
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t distribution
t Distribution: Critical values of t

Degrees of  Two-tailed test 10% 5% 2% 1%      0.2% 0.1%
freedom     One-tailed test       5%      2.5%        1%       0.5%      0.1%   0.05%

1 6.314 12.706 31.821 63.657 318.31 636.62
2 2.920 4.303 6.965 9.925 22.327 31.598
3 2.353 3.182 4.541 5.841 10.214 12.924
4 2.132 2.776 3.747 4.604 7.173 8.610
5 2.015 2.571 3.365 4.032 5.893 6.869

… … … … … … …
… … … … … … …
18 1.734 2.101 2.552 2.878 3.610 3.922
19 1.729 2.093 2.539 2.861 3.579 3.883
20 1.725 2.086 2.528 2.845 3.552 3.850
… … … … … … …
… … … … … … …

120 1.658 1.980 2.358 2.617 3.160 3.373
∞ 1.645 1.960 2.326 2.576 3.090 3.291
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Two-Sided Alternatives
When a specific alternative is not stated, it is 
usually considered to be two-sided.
If H0 is rejected in favor of H1 at α = 5%, we 
usually say that “xj is statistically significant
at the 5% level”.
If H0 is not rejected, we say that “xj is 
statistically insignificant at the 5% level”.
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Two-Sided Alternatives
The two-sided significance test we have just 
seen is calculated routinely by regression 
software for each variable included in a 
model.
These tests and associate probability values 
are reported together with estimates and 
standard errors.
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Other Hypothesis about βj
Consider now the null hypothesis

H0: βj = aj

Then the appropriate t statistic is

As before,     measures how many estimated 
standard deviations      is away from the 
hypothesized value of βj.

In general: 
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Other Hypothesis about βj
The rejection rule, one or two tails, depend 
on the form of the alternative.
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Computing p-values for t Tests
We have explained the classical approach:

1. State H0 and H1, the last one either 
explicitly or implicitly.

2. Choose α, which determines c (i.e. the 
rejection region).

3. Compare the value of the t statistic with c.
4. Eventually H0 is either rejected or nor 

rejected at the given α.
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Computing p-values for t Tests
To some extend the classical approach is in 
some sense arbitrary, since we have to 
choose α in advance, and eventually H0 is 
either rejected or not.
If H0 is eventually rejected, we don’t know 
if this rejection is strong o weak. And the 
same is true if H0 is not rejected.
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Computing p-values for t Tests
Instead of testing at a given α, consider de 
following question: “Given the observed 
value of the t statistic, what is the smallest 
significance level at which H0 would be 
rejected? This level is known as the p-value
for the test”.
That is, the p-value is the significance level 
of the test when we use the value of the test  
statistic as the critical value for the test.
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Computing p-values for t Tests
Example: Assume df = 40 and                 .
What would be the p-value for a two-tailed tests?

p-value = Pr(| T | > 1.85) = 2.Pr(T > 1.85) = 2(.0359) = .0718

This means that, if the H0 is true, we would observe 
an absolute value of the t statistic as large as 1.85 
about 7.2% of the time.
This provides some evidence against H0, since it 
would be rejected at α = 10%, but not at α = 5%.
What would be the p-value for a positive one-tailed 
alternative? And for a negative one?

ˆ 1.85
jj

tβ =
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Computing p-values for t Tests

0

null hypothesis: H0 : βj = aj

alternative hypothesis: H1 : βj ≠ aj

1.85
The p-value takes as the critical value the observed value of the test statistic, and from this 
computes the significance level of the test.

area = .0359

-1.85

area = .0359
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Computing p-values for t Tests
This example shows that once the p-value 
has been computed, a classical test can be 
carried out at any desired level.
If α denotes the significance level of the test, 
then H0 is rejected if p-value < α; otherwise, 
H0 is not rejected at the 100.α% level.
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Computing p-values for t Tests
The p-value nicely summarizes the strength 
or weakness of the empirical evidence 
against H0.
A useful interpretation is the following: the 
p-value is the probability of observing a t
statistic as extreme as we did if the null 
hypothesis is true.
This means that small p-values are evidence 
against H0; large p-values provide little 
evidence against H0.
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Computing p-values for t Tests
Since a p-value is a probability, its value is 
always between 0 and 1.
To compute p-values we need a very detailed 
statistical tables or a computer program that 
computes areas under probability density 
functions.
You don’t have to worry about because 
statistical software computes p-values for all 
statistical tests.
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A Note on Terminology
When H0 is not rejected, we prefer to say: “we fail 
to reject H0 at the α% level”, rather than “H0 is 
accepted at the α% level”.
The reason why the former is preferred is that, if 
we change the value of H0 a little bit, we can also 
“accept” this new hypothesis, which is 
meaningless. We cannot “accept” both of these 
hypothesis.
All we can say is that the data does not allow us to 
reject either of these hypothesis. So our sample is 
consistent with both of them.
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Economic versus
Statistical Significance

So far we have emphasized statistical 
significance. However it is important to 
remember that we should pay attention to the 
magnitude of the coefficient estimates in 
addition to the t statistics.
Statistical significance of a variable xj is 
determined entirely by the size of     , whereas 
the economic significance of a variable is 
related to the size (and sign) of     .  

ˆ jj
tβ

ˆ
jβ
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Economic versus
Statistical Significance

Too much focus on statistical significance can 
lead to the false conclusion that a variable is 
“important” for explaining y even though its 
estimated effect is modest.
So even if a variable is statistically significant, 
you need to discuss the magnitude of the 
estimated coefficient to get an idea of its 
practical or economic importance.
This step requires some care, depending on 
how the variables appear in the equation.
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Confidence Intervals
Under the CLM, we can easily construct a 
confidence interval (CI) for the population 
parameter, βj .
CI are also called interval estimates, because 
they provide a range of likely values for βj , 
and not just a point estimate.
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Confidence Intervals
Using the fact that

a simple manipulation leads to a CI for the 
unknown βj.
A 95% CI, is given by
where c is the 97.5th percentile in a tn−k−1
distribution.

1

ˆ
~ˆ( )

j j
n k

j

t
se

− −
β − β

β

ˆ ˆ. ( )j jc seβ ± β
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Confidence Intervals
In general a  (1 − α)%  CI is defined as

where c is the               percentile in a tn−k−1
distribution.

ˆ ˆ. ( )j jc seβ ± β

1
2
α⎛ ⎞−⎜ ⎟

⎝ ⎠
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Confidence Intervals
More precisely, the lower and upper bounds 
of the confidence interval are given by

and

respectively.

ˆ ˆ. ( )j j jc seβ ≡ β − β

ˆ ˆ. ( )j j jc seβ ≡ β + β
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Confidence Intervals: Meaning
If random samples were obtained over and 
over again, with     , and     computed each 
time, then the (unknown) population value βj
would lie in the interval             for (1 − α)% 
of the samples.
Unfortunately, for the single sample that we 
use to construct the CI, we do not know 
whether βj is actually contained in the interval.

jβ jβ

( , )j jβ β
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Confidence Intervals
Once a CI is constructed, it is easy to carry 
out two-tailed hypothesis tests.
If the null hypothesis is H0: βj = aj , then H0
is rejected against H1: βj ≠ aj at (say) the 5% 
significance level if, and only if, aj is not in 
the 95% CI.
Hence all values contained in the CI are 
consistent with our data, in the sense that 
wouldn’t be rejected in a two-tailed test.
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Testing a Linear Combination
In many applications we are interested in 
testing hypothesis involving more than one of 
the population parameters.
Example: Cobb-Douglas Production Function

log(y) = β0 + β1log(l) + β2log(k) + u
Hypothesis of interest: Constant Returns

H0: β1 + β2 = 1
Against

H1: β1 + β2 ≠ 1
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Testing a Linear Combination
We cannot simply use the individual t
statistics for     and      to test H0.
However, it is easy to see that the t statistic is 
now based on whether the estimated sum       
is sufficiently different from one to reject H0
in favor of H1.

1β̂ 2β̂

1 2
ˆ ˆβ + β
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Testing a Linear Combination
To account for the sampling error in our 
estimators, we standardize this sum by 
dividing by the standard error

Once we have the t statistic, testing proceeds 
as before. We choose a significant level for the 
test, α, and, based on the df, obtain a critical 
value, c.

1 2

1 2
ˆ ˆ

1 2

ˆ ˆ 1
ˆ ˆ( )

t
seβ +β
β + β −

=
β + β
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Testing a Linear Combination
Or, we compute the t statistic and then 
compute the p-value of the test.
The procedure is the same if H1 is a one sided 
alternative, H1: β1 + β2 < 1 or H1: β1 + β2 > 1.
The only tedious part in obtaining         is

, since you cannot compute it from 
the individual standard errors of the estimates, 
that is the information you get from the 
regression output.

1 2ˆ ˆtβ +β

1 2
ˆ ˆ( )se β + β
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Testing a Linear Combination
In fact, to compute                  you need 
information on the estimated covariance, since 

Hence

where s12 denotes an estimate of 

1 2
ˆ ˆ( )se β + β

1 2 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) 2 ( , )Var Var Var Covβ + β = β + β + β β

2 2
1 2 1 2 12

ˆ ˆ ˆ ˆ( ) ( ) ( ) 2.se se se s⎡ ⎤ ⎡ ⎤β + β = β + β +⎣ ⎦ ⎣ ⎦

1 2
ˆ ˆ( , )Cov β β
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Testing a Linear Combination
Many econometric software packages have an 
option to display estimates of the covariance 
terms like                   .
More generally, we can always restate the 
problem to get the test we want.
So in practice is usually much easier to 
estimate a different model that directly 
delivers the standard error of interest.
Lets see our previous example.

1 2
ˆ ˆ( , )Cov β β
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Testing a Linear Combination
Define θ = β1 + β2 − 1, so H0: θ = 0.
From this β1 = θ − β2 + 1, so substitute β1 in the 
original equation

log(y) = β0 + (θ − β2 + 1) log(l) + β2log(k) + u
Hence

log(y/l) = β0 + θlog(l) + β2log(k/l) + u
Regress log(y/l) on a constant, log(l) and log(k/l);

and get the t statistic                   from the regression 
output.

ˆ

ˆ
ˆ( )

t
seθ

θ
=

θ
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Testing a Linear Combination
The strategy of rewriting the model, so that it 
contains the parameter of interest, works in all 
cases and is usually easy to implement.
Other examples of hypotheses about a single 
linear combination of parameters are:
β1 = β2; β1 = −(1/2)β2; β1 = 1 + β2; β1 = 5β2;...
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Multiple Linear Restrictions
So far, we have only considered hypothesis 
involving a single restriction. But frequently, 
we wish to test multiple hypothesis about the 
underlying parameters β0, β1, β2,…,βk.
We begin with the leading case of testing 
whether a set of independent variables has no 
partial effect on the dependent variable, y.
These are called exclusion restrictions.
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Testing Exclusion Restrictions
Example: Consider the model
y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + u
A typical example of exclusion restrictions is

H0: β3 = β4 = β5= 0
This is an example of a set of multiple 
restrictions, because we are putting more than 
one restriction on the parameters in the above 
equation.
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Testing Exclusion Restrictions
A  test of multiple restrictions is called a 
multiple hypothesis test or a joint 
hypothesis test.
As before we need:

1. H1, either explicitly or implicitly.
2. A significance level, α.
3. A statistic whose distribution is known under 

H0.
4. A critical value, c, which determines the 

rejection region.
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Testing Exclusion Restrictions
What should be the alternative?

H1: H0 is not true
The test we study now is constructed to 
detect any violation of H0.
It is also valid when the alternative is 
something like

H1: β3 > 0, β4 > 0, β5 > 0
but it will not be the best possible test under 
such alternatives.
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Testing Exclusion Restrictions
We do not have the statistical background 
necessary to cover tests that have more 
power under multiple one-sided alternatives.
To test H0 it is temping to use the individual 
t statistics on x3, x4 and x5.
This option is not appropriate.
A particular t statistic tests a hypothesis that 
puts no restriction on the other parameters.
We need a way to test exclusion restrictions 
jointly.
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Testing Exclusion Restrictions
It turns out that the sum of squared residuals, 
SSR, provide us with a very convenient 
basis for testing multiple hypothesis.
Before we go into the details of the statistic 
to use, we need two more concepts in 
relation to H0.

1. Unrestricted model: The model we begin 
with.

2. Restricted model: The model under H0.
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Testing Exclusion Restrictions
In the above example the restricted model
is

y = β0 + β1x1 + β2x2 + u
By definition the restricted model always 
have less parameters than the unrestricted 
one.
The restricted model is obtained by 
imposing H0 on the original model.
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Testing Exclusion Restrictions
Moreover it is always true that

SSRr ≥ SSRur

where SSRr is the SSR of the restricted 
model,
and SSRur is the SSR of the unrestricted 
model.
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Testing Exclusion Restrictions
To see this, note that imposing restrictions 
on a model cannot lower the SSR.
Remember that, because OLS estimates are 
chosen to minimize the sum of squared 
residuals, the SSR never decreases (and 
generally increases) when some restrictions 
(like dropping variables) are introduced into 
the model.
This is an algebraic fact.
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Testing Exclusion Restrictions
Hence, even if the SSR itself tells us nothing 
about the truth of H0. The increase in the SSR 
when the restrictions are imposed can tell us 
something about the likely truth of H0.
If we get a large increase, this is evidence 
against H0, and this hypothesis will be 
rejected.
If the increase is small, this is not evidence 
against H0, and this hypothesis will not be 
rejected.
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Testing Exclusion Restrictions
The question is then whether the observed 
increased in the SSR when the restrictions are 
imposed is large enough, relative to the SSR 
in the unrestricted model, to warrant rejecting 
H0.
In others words, what we need to decide is 
whether the increased in the SSR in going 
from the unrestricted model to the restricted 
model is large enough to warrant rejection of 
H0.
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Testing Exclusion Restrictions
As with all testing, the answer depends on α.
Βut we cannot carry out the test at a chosen α
until we have a statistic whose distribution is 
known, and can be tabulated, under H0.
Thus, we need a way to combine the 
information in SSRr and SSRur to obtain a 
test statistic with a known distribution under 
H0.
Lets see the general case.
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Testing Exclusion Restrictions
Unrestricted model:

y = β0 + β1x1 + β2x2 + … + βkxk + u
We have q exclusion restrictions to test, that 
is, H0 states that q of the variables have zero 
coefficients.
Assuming that they are the last q variables, H0
is stated as

H0: βk−q+1 = βk−q+2 = … = βk= 0
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Testing Exclusion Restrictions
Restricted model:

y = β0 + β1x1 + β2x2 + … + βk−qxk−q + u
Obtained by imposing H0 on the unrestricted 
model.
H1 is stated as

H1: H0 is not true
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Testing Exclusion Restrictions
The F statistic, or F ratio, is defined by

where SSRr is the SSR of the restricted 
model, and SSRur is the SSR of the 
unrestricted model.
Note that 

( )SSR SSR
SSR ( 1)

r ur

ur

q
F

n k
−

=
− −

SSR SSR 0r ur F≥ ⇒ ≥
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Testing Exclusion Restrictions
The easiest way to remember where the 
SSR´s appear is to think of F as measuring 
the relative increase in SSR when moving 
from the unrestricted to the restricted model.
The difference in SSR´s in the numerator of 
F is divided by q, which is the number of 
restrictions imposed in moving from the 
unrestricted to the restricted model.
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Testing Exclusion Restrictions
Note that we can write

q = numerator degrees of freedom = dfr − dfur

so q is the difference in the df between the 
restricted and unrestricted model, dfr > dfur.
The SSR in the denominator of F is divided 
by dfur.

n−k−1 = denominator degrees of freedom = dfur
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Testing Exclusion Restrictions
In fact, the denominator of F is just the 
unbiased estimator of σ2 = Var(u) in the 
unrestricted model.

In order to use the F statistic for hypothesis 
testing, we must know its sampling 
distribution under H0 in order to choose c for 
a given α, and determine the rejection rule.

2 SSRˆ
1

ur

n k
σ =

− −
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Testing Exclusion Restrictions
It can be shown that, under H0, and assuming 
the CLM assumptions hold, the F statistic is 
distributed as an F random variable with
(q , n − k − 1) df.
We write this result as

The Fq,n−k−1 distribution is readily tabulated 
and available in statistical tables.

, 1 0~ on Hq n kF F − −
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Testing Exclusion Restrictions
It is pretty clear from the definition of F that 
we will reject H0 in favor of H1 when F is 
sufficiently “large”.
As usual, how large depends on α.
For α = .05, let c be the 95th percentile in the 
Fq,n−k−1 distribution. This critical value 
depends on q, the numerator df, and on
n − k − 1, the denominator df.
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Testing Exclusion Restrictions
The rejection rule is quite simple.
Rejection rule: Reject H0 in favor of H1 at 
the given α if F > c, where c is the 
corresponding percentile in the Fq,n−k−1
distribution.

In general q will be notably smaller than
n − k − 1.



Francisco J. Goerlich Introductory Econometrics 104

The F statistic

reject H0do not reject H0

0

α = .05

c

Example of a rejection rule: Reject H0 at α = .05 if F > c.
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Testing Exclusion Restrictions
If H0 is rejected, then we say that xk−q+1,
xk−q+2,…, xk are jointly statistically 
significant, or just jointly significant, at the 
appropriate significance level.
This tests alone does not allow us to say 
which of the variables has a partial effect on 
y; they may all affect y or maybe only one 
affects y.
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Testing Exclusion Restrictions
If H0 is not rejected, then we say that xk−q+1,
xk−q+2,…, xk are jointly statistically 
insignificant, or just jointly insignificant, 
which often justifies dropping them from the 
model.

The F statistic is often useful for testing 
exclusion of a group of variables when the 
variables in the group are highly correlated.
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Relation between F and t Statistics
We have just seen how to use the F statistic 
to test whether a group of variables should be 
included in the model.
What happens if we apply the F statistic to 
the case of testing significance of a single
independent variable?
This is, when q = 1 and H0: βk = 0?
We know that the t statistic on βk can be used 
to test this hypothesis.
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Relation between F and t Statistics
Do we have two different ways of testing the 
same H0: βk = 0?
The answer is no.
It can be shown that the F statistic for testing 
H0: βk = 0, is just equal to the square of the 
corresponding t statistic.
Hence, the two approaches lead to exactly 
the same outcome, provided that the 
alternative is two-sided.
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Relation between F and t Statistics
It can be shown that                        .
But, the t statistic is more flexible for testing 
a single hypothesis, because it can be used to 
test against one-sided alternatives.
Moreover, since the t statistics are also easier 
to obtain than the F statistics, there is really 
no good reason to use an F statistic to test a 
single hypothesis. Use a t test instead.

2
1 1, 1n k n kt F− − − −≡



Francisco J. Goerlich Introductory Econometrics 110

Relation between F and t Statistics
Remember: The F statistic is intended to detect 
whether any combination of a set of coefficients is 
jointly different from zero, but it is never the best 
test for determining whether a single coefficient is 
different from zero.
Hence, if we fail to reject H0 there is always the 
possibility that a single variable will be significant.
The t test is best suited for testing a single 
hypothesis.



Francisco J. Goerlich Introductory Econometrics 111

The R-Squared form of the F Statistic
It often convenient to have a form of the F
statistic that can be computed from the R2 of 
the restricted and unrestricted models.
Using the fact that                                  and

, we can write the F as

since the SST term cancels.

2SSR SST.(1 )r rR= −
2SSR SST.(1 )ur urR= −

( )
( )

2 2

2

R R

1 R ( 1)
ur r

ur

q
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n k
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The R-Squared form of the F Statistic
This is called the R-squared form of the F
statistic.

Warning: Whereas the R-squared form of 
the F statistic is very convenient for testing 
exclusion restrictions, it cannot be applied 
for testing all kind of linear restrictions.
More on this later on.
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Computing p-values for F Tests
In the F testing context, the p-value is 
defined as

p-value = Pr(ℑ > F)
where ℑ denotes an F random variable with 
(q , n − k − 1) df, and F is the actual value of 
the test statistic.
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Computing p-values for F Tests
The p-value still have the same interpretation 
as it did for t statistics: It is the probability of 
observing a value of F at least as large as we 
did, given that the null hypothesis is true.

A small p-value is evidence against H0.
A large p-value is not evidence against H0.
As with t testing, once the p-value has been 
computed, the F test can be carried out at any 
significance level. 
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Overall significance
A special case of exclusion restrictions is

H0: β1 = β2 = … = βk= 0
Which could be alternatively written as

H0: x1, x2, …, xk do not help to explain y
This null states that none of the explanatory 
variables has an effect on y.
Another useful way of stating the null is

H0: E(y | x1, x2, …, xk) = E(y)
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Overall significance
And H1 is that at least one of the βj is 
different from zero,

H1: βj ≠ 0  for some j

The restricted model is
y = β0 + u

For this model                             and R2 = 00
ˆ ˆ, i iy u y yβ = = −
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Overall significance
Therefore, the F statistic for testing H0 can 
be written as

where R2 is just the usual R-squared from 
the regression of y on x1, x2, …, xk .

( )
2

2

R
1 R ( 1)

kF
n k

=
− − −
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Overall significance
Warning: This special form of the F
statistic is valid only for testing joint 
exclusion restriction of all independent 
variables, excluded the intercept.

This is called testing the overall 
significance of the regression, and it is 
usually computed by regression software 
after OLS estimation.
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Testing General Linear Restrictions
Sometimes we are interested in testing 
multiple joint restrictions, which not all are 
of the exclusion form.
For example, in a model with k = 5,

H0: β1 = β2 , β3 = 1, β4 = 0, β5= 0
The important thing we should remember is 
that the SSR form of the F test can always 
be applied in these situations.
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Testing General Linear Restrictions
All we need is the SSR of the restricted and 
unrestricted models.
In order to get SSRr we have to impose the 
restrictions on the model, to get the 
restricted model.
Note that this can involve redefining some 
variables, before the restricted model can be 
estimated.
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Testing General Linear Restrictions
In the previous example the restricted model 
is

y = β0 + β1x1 + β1x2 + x3 + u
but before we can estimate it, we should 
write the model as

y − x3 = β0 + β1(x1 + x2) + u
So to get SSRr, we regress y − x3 on x1 + x2.
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Testing General Linear Restrictions
Once the restricted and unrestricted model 
have been estimated, the F statistic is 
computed in the usual way, using SSR from 
both models.
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Testing General Linear Restrictions
Warning: We cannot use the R-squared form of 
the F statistic in this example because the 
dependent variable in the restricted and the 
unrestricted model is different. This means that the 
SST are different in the two regressions and both 
formulas are no longer equivalent.

As a general rule, the SSR form of the F statistic 
should be used if a different dependent variable is 
needed in running the restricted regression.
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Reporting Regression Results
Some guidelines on how to report multiple 
regression results:

1. Estimated OLS coefficients should always 
be reported.

2. For the key variables in an analysis, you 
should interpret the estimated coefficients.
This often requires knowing the units of 
measurement of the variables.
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Reporting Regression Results
3. The economic or practical importance of the 

estimates of the key variables should be 
discussed.

4. The standard errors should always be 
included along with the estimated 
coefficients.
Better standard errors than t statistics.

5. The R-squared from the regression should 
always be included.
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Reporting Regression Results
6. Reporting the overall significant F test, and 

its p-value, is good practice.
7. Reporting SSR and the standard error of the 

regression is good practice, but it is not 
crucial.

8. The number of observations, n, should be 
reported.

9. Reporting can be done in equation form, or 
in table form for many equations at a time.
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Reporting Regression Results
10. This list will be updated as more material is 

covered.
In particular when we study misspecification 
tests.
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